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1. Introduction 

 

In recent decades, wavelet theory has been well 
developed and widely applied to various fields. Cho and 
Park

[1]
 firstly developed the wavelet Galerkin method 

for solving the neutron diffusion equation in one- and 
two-dimensional geometry. Then, based on this work, 
Nasif

[2]
 obtained the connection coefficients analytically, 

which lead to stability of the wavelet-based method. 
Both of them obtained high accuracy for the solution of 
strongly heterogeneous problems.  

In this paper, we describe a wavelet theory method 
to solve the neutron transport equation. We utilize 
Daubechies’ wavelet

[3]
 bases to expand the angular 

variables of second-order neutron transport equation, 
Self-Adjoint Angular Flux (SAAF) equation, and 
transform the SAAF equation into a set of partial 
differential equations in terms of wavelet expansion 
coefficients which contain spatial variables only. These 
spatially dependent partial differential equations are 
solved by use of Finite Element Method (FEM). Finally,  
numerical results of a test problem are given to 
demonstrate the validity of the method. 
 

2. Wavelet Method for Neutron Transport Equation 

 
The multi-group SAAF equation derived by Morel

 

and McGhee
[4]
 can be written as:  
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where dS  denotes the within-group block of the 
multi-group scattering matrix and oS  denotes the 
between-group block of the multi-group scattering 
matrix.  

We consider a two-dimensional neutron transport 
problem in a rectangular region and use the following 
notations for convenience,    

cos [ 1,1] and =cos [ 1,1]µ θ η ϕ= ∈ −   ∈ −     (2) 
So the transport operator can be written as  
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In our wavelet method, the flux is expanded by use 

of Daubechies’ scaling functions as follows: 
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where , ( )n jv µ  is scaling function and 
12 2 2np N+= + − . 

Substituting eq.(3) and eq.(4) into SAAF, applying 
the Galerkin method to the above equation, multiplying 
an individual wavelet on both sides and integrating in 
the angular domain, and using the following 
orthogonality properties of wavelets, 
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we obtain the following equations  
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where the coefficients A~E can be readily calculated by 
use of Gaussian quadrature.  

Two types of boundary condition are considered.  
(1) Zero flux boundary condition 

,( , ) 0 0bg jk grφ ψΩ =          ⇒       =
r

    (7) 

(2) Reflective boundary condition 
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There are many types of numerical methods to solve 
eq. (6). Here, we choose FEM with unstructured-meshes. 
Details of this procedure are not covered in this paper. 
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3. Numerical Results 
 
A two-dimensional fixed source problem

[5]
 was 

solved by use of the method. The geometry and 
unstructured-meshes are shown in Fig.1. The reflective 
boundary conditions are used for all outer boundaries.  

 

Fig. 1  Geometry and meshes 

 
The results of spatial flux distribution along the 

bottom boundary are shown in Fig.2. The flux 
calculated by the SN code TWOTRAN exhibits 
oscillations attributed to the ray effects. The wavelet 
method (N=4,n=4) results show better agreements with 
reference

[5]
 than PN (P5) method

[6]
. 

 We compare the flux distributions at point 1 and 2 
along azimuthal direction obtained by the PN method 
and wavelet method as shown in Fig.3 and Fig.4. From 
the figures, we can see that the angular flux varies 
greatly along azimuthal direction. The results of the two 
methods show good agreement except for the obvious 
discrepancies at peak points.  

 

 

 

 

 

 

 

 

 

Fig.2 Flux distribution along bottom boundary 

 

Fig.3  Flux distribution along ϕ at point 1 
 
   We also compare the computational efficiency of 

the two methods. P5 calculation takes 9.8 seconds, and 

wavelet calculations with N=4,n=3 and N=4,n=4 take 
14.5 seconds and 21.4 seconds, respectively. P7 
calculation takes 22.3 seconds without obvious 
improvement of accuracy with respect to the reference. 
Thus, we may conclude that wavelet method can present 
high accuracy with competitive speed. 

 

Fig.4 Flux distribution along ϕ at point 2 

 
4. Conclusions and Suggestions 
 
We developed a wavelet theory method to solve the 

neutron transport equation. In this method, Daubechies’ 
wavelet bases are utilized to expand the angular 
variables of the neutron flux. A numerical test shows 
that the wavelet method may be used to solve the 
neutron transport equation with high precision and 
acceptable speed. 

This work is just the beginning of research on 
application of wavelet theory to neutron transport 
equation. There are several problems which need to be 
improved, for example, vacuum boundary condition, 
acceleration method and stability of iteration. Further 
numerical tests are warranted. 
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