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1. Introduction 
 
   Truncation neglecting low-probability cut sets is 
usually applied to determine the minimal cut sets of a 
manageable size in probabilistic safety assessment 
(PSA). The truncation error has been of great concern 
in PSAs because risk and important measures are only 
computed from an incomplete cut set equation. A 
truncation error evaluation method, which is based on 
Monte Carlo techniques and the characteristics of 
coherent reliability systems, is proposed in this paper. 
The applicability and accuracy of the proposed method 
are described. 

 
2. Method and Results 

 
   This section presents the mathematical formulation of 
truncation errors and the proposed algorithm for 
quantifying truncation errors in MCS-based fault tree 
analyses.  

 
2.1 Mathematical Formulation of Truncation Errors  

 
   We consider a coherent fault tree consisting of k basic 
events B = (b1, …, bk). The structure function φ(X) of 
the fault tree is a deterministic binary function of the 
basic event state vector X = (x1, …, xk). When the top 
event is occurring, φ(X) is equal to 1. We denote the 
probability of the top event by h(p) = E[φ(X)] where p 
= (p1, ..., pk) and pi = Pr{xi = 1}. Similarly, the functions 
with the probability of a specific basic event bi set to 0 
and 1 are denoted by h(0i,p) = E[φ(0i,X)] and h(1i,p) = 
E[φ(1i,X)], respectively [1,2]. 
   In evaluating fault trees with probability-based 
truncation, only the MCSs with probability above pre-
established cut-off value Vc are developed and the other 
cut sets are discarded. The developed MCSs, K1, …, 
Km, have probability greater than Vc. We can define a 
new structure function in terms of only the developed 
MCSs as follows: 
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   Let us define a new binary function δ(X) associated 
with the truncation error as: 
 .)()()( XXX mφφδ −≡  (2) 
Then, the actual truncation error can be written as: 
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   Let us define a new value W(X) related to the 
occurrence probability of B1(X)={bi|xi=1} for a sample 
state vector X as: 

 .)(
1)(1

∏=∏≡
=∈

k

i

x
i

Bb
i

i

i

ppW
X

X  (4) 

The binary function δ(X) has the following properties: 
   P1: If W(X) > Vc, then δ(X) = 0. 
   P2: If δ(X) = 0, then δ(0i,X) = 0 for all i. 
   P3: If δ(X) = 1 and bi ∉ B1(X), then δ(0i,X) = 1. 
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Figure 1. Relations among the binary functions:  
A B C D = {∪ ∪ ∪ X|φ(X)=1}, A B = {∪ X|φm(X)=1}, 
A C = {∪ X|φ(0i,X)=1}, A = {X|φ m(0i,X)=1},  
C D = {∪ X|δ(X)=1} and C = {X|δ(0i,X)=1}. 
 
2.2 Evaluation of Truncation Errors 

 
   We developed a Monte Carlo algorithm to quantify 
the truncation errors for coherent fault trees. The 
proposed algorithm determines a random state vector 
Xs=(x1, …, xk) by the dagger sampling and its binary 
values δ(X) and δ(0i,X) using their properties.  
   Kumamoto et al. [3] proposed the dagger sampling 
method, which appreciably reduces computing time to 
use a large number of trials for rare-event problems. 
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Figure 2. Generation of 100 samples for event with 
probability 0.01 by the dagger sampling method. 
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Figure 3. Flow chart for the proposed algorithm. 
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from a proposed Monte Carlo simulation with sample 
size N. Then the truncation errors can be estimated by 

the unbiased binominal estimators, 
N
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can be estimated by the following equations: 
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Inferring from the characteristics of coherent reliability 
systems, we get for all i 
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2.3 Numerical Example 

 
   The example is a binary coherent fault tree, which 
contains 613 logic gates and 677 independent basic 
events. All runs were performed on a 2 GHz Pentium 

IV using the FORTRAN program based on the 
proposed algorithm. 
   Table 1 gives simulation results of the truncation 
errors for 5 different cut-off value cases with a sample 
size N = 108. Table 2 provides an example simulation 
result in terms of importance measures of some basic 
events that are selected in the order of change ratio of 
RRW. This result is obtained from one simulation with 
N = 108 and Vc = 10-8. 

 
Table 1.  Truncation errors (with N = 108) 

Vc 
# of 

MCSs hm(p) )(ˆ pd  
95% Limit
of )(ˆ pd

CPU time 
(sec.) 

1E-8 
1E-10
1E-12
1E-14
1E-15

230 
2245 

12201
51321
103170

2.4164E-4
2.4407E-4
2.4420E-4
2.4420E-4
2.4420E-4

2.01E-6 
6.00E-8 
2.00E-8 
1.00E-8 

0.0 

2.24E-06
1.00E-07
4.33E-08
2.65E-08

0.0 

404.03  
179.72  
98.92  
71.95  
65.97 

 
Table 2. Importance measures considering truncation 
errors (with N = 108 and Vc = 10-8) 

i pi RRWm
a RRWb RAWm

c RAWd 

4 
93 
94 
7 

242
345
… 

1.0 
7.41E-3
7.41E-3

1.0 
1.20E-3
3.40E-4

… 

1.0878 
1.0623 
1.0645 
1.0043 
1.0087 
1.0025 

… 

1.0943  
1.0638  
1.0660  
1.0056  
1.0097  
1.0034  

… 

1.0000  
8.8585  
9.1182  
1.0000  
8.1892  
8.4556  

… 

1.0000 
9.0392 
9.2914 
1.0000 
8.9875 
11.0534 

… 
aRRWm = hm(p)/hm(0i,p)  bRRW = {hm(p)+ )(ˆ pd }/{hm(0i,p)+ ),(0ˆ pid } 

cRAWm = hm(1i,p)/hm(p) dRAW = hm(1i,p)+ ),(1ˆ pid }/{hm(p)+ )(ˆ pd } 

 
3. Conclusions 

 
This paper presents a practical tool to evaluate 

truncation errors in minimal cut set-based fault tree 
analyses. This method can be easily applied in PSAs 
and does not require much computation time. The 
method will be useful in reviewing PSA results, 
particularly for the regulatory purpose.  
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