ANSYS

A Study on the Development of Fuel Assembly Detailed Model using ANSYS

Abstract

The fuel assembly SSE/LOCA analysis is performed to verify that the fuel assembly is limited to its stress criteria and maintained a coolable geometry and RCCA can be inserted in fuel assembly. The core model for this fuel assembly SSE/LOCA analysis is accomplished by simplified spring-mass model which is established using fuel assembly detailed model. Up to now, the fuel assembly detailed model has been established using WECAN finite element code of Westinghouse Electric Co. In this study, the fuel assembly detailed model using a commercial finite element analysis code, ANSYS was established to replace WECAN code for fuel assembly SSE/LOCA analysis. To verify ANSYS model, fuel assembly modal analysis was performed and the results are compared with the WECAN analysis results and the fuel assembly mechanical test results.

The difference of analysis results between ANSYS and WECAN model is less than 1%, therefore, ANSYS can be used in the fuel assembly Seismic/LOCA analysis.

2004

		Condition III	IV	가
SSE/LOCA			ASME Section	n III NG 3000
Appendix F (Rules for I	Evaluation of Service Lo	ading with Level D Servi	ce Limits)	
	2			가
,	가	.[1]		
		-		2
-				
WECAN				
		WECAN	ANSYS	,
ANSYS	,			
ANSYS	,	WECAN	Modal	
	가 .			
2.	Modal Analysis			

2.1

.

7) Potential Energy .

$$\Pi = \int_{\Omega} \frac{1}{2} \varepsilon^{T} \sigma d\Omega - \int_{\Omega} u^{T} b d\Omega - \int_{\Gamma} u^{T} f d\Gamma$$
(1)

$$\epsilon$$
:(Strain) σ :(Stress)u:(Displacement),b:(Body Force)f:(Applied Force)..

.

가

,

.

$$\Pi_{e} = \int_{\Omega} \frac{1}{2} \mathbf{u}^{\mathrm{T}} (\mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B}) d\Omega - \int_{\Omega} \mathbf{u}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} b d\Omega - \int_{\Gamma} \mathbf{u}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} f d\Gamma$$
(2)

Пе

$$\delta \Pi_{e} = \frac{\partial \Pi_{e}}{\partial u} = 0$$
(2)
$$K_{e}u = F_{e}$$
(3)
$$K_{e} = \int_{\Omega} (B^{T}DB)d\Omega, \quad F_{e} = \int_{\Omega} N^{T}bd\Omega - \int_{\Gamma} N^{T}fd\Gamma$$

(3)

Assemble

,

2.2

.

가

.

$M\ddot{u} + Ku = 0$		(4)
,	Harmonic Equation	(4)
Eigenvalue Equation		
$(\mathbf{K} - \omega^2 \mathbf{M})\mathbf{u}_0 = 0$		(5)
(5)가 Non-Trivial	K- $ω^2$ M Determinant 7 0	• ,
$ \mathbf{K} - \lambda \mathbf{M} = 0$, $\lambda = \omega^2$	(6)
Eigenvalue λ_i	(Natural Frequency, $\varpi_i = \sqrt{\lambda_i}$), Eigenvector	u _i Mode Shape

3. ANSYS WECAN ^{[2],[3]}

.

Frontal Method Solver ANSYS WECAN , ANSYS WECAN 3.1 Beam Element Beam , , , , , , Effective Beam , Beam ,		ANSYS				WECAN	
ANSYS WECAN . Beam, Contact Sliding , ANSYS WECAN . 3.1 Beam Element Beam , , , , , , Effective Beam , Beam ,	Frontal Method	Solver					
Beam, Contact Sliding , ANSYS WECAN . 3.1 Beam Element Beam , , , , , , Effective Beam . Beam ,	ANSYS WECAN						
, ANSYS WECAN . 3.1 Beam Element Beam , , , , , , Effective Beam ,				Beam	, Contact	Sliding	
3.1 Beam Element Beam , , , , , , Effective Beam ,	, ANSYS WECAN						
3.1 Beam Element Beam , , , , , Effective Beam , Beam ,							
Beam,,,Effective Beam.Beam,	3.1 Beam Element						
Effective Beam , Beam ,		Beam	,	,	,	,	
	Effective Beam		Beam		>		

2 (Uniaxial) ANSYS WECAN 2-D Elastic Beam Element

Geom	etry, Nodal Locatio	on Coordinate Sys	stem	1	1	
3.2 Contact	Element					
		Contact Element		/		Mechanism
	ANSYS	, , WECAN 2-I) Point-to-Point (Contact Element	2 Geon	- netrv Nodal
Location, C	coordinate System		2 2	,		, 100 uu
1) Cl	osed and Stuck					
	$\mu F_n > F_s$					
	μ	: Friction Coefficient,	F _n : Normal Fo	rce, F _s : Sliding F	orce	
2) Cl	osed and Sliding					
	$\mu F_n = F_s$					
3) Op	en : No Contact					
3.3 Sliding I	Element					
Sliding			/			
Shung			7	2	2	
	, Gap	Size		, ANSYS	, 2 WECAN	Sliding
,	Geometry, Nod	al Location Coor	dinate System	,		3
3			-			
		ANS	YS WECAN			,
2	ANSYS	WECAN			Real	Constant
가	ANSYS			WECAN		
7	가 .					
4.						
	WECAN			ANSYS		
	가	17×17 RFA	AN	NSYS		,
		WECAN	WECAN			
	ANSVS	W ECAN			,	
17x17 R	FA	4		フト	1	
_,, A	1	, (Active	Fuel)	가	1	, 6

	3,	가			1	,
	1,	24	, 1			
264						
					Effective	
				3		Beam,
Contact	Sliding 7	·	7×17 RFA			
5		156	304		, ANSYS	WECAN
	가	ANSYS	WECAN		, Re	al Constant,

UX=0 @ node 2, 4, 151 & 152 UY=0 @ node 152

, Master DOF , ANSYS Reduced Modal Analysis Option .

.

5.

		AN	SYS	WECAN					
			4	ANS	YS W	/ECAl	N	17×17	RFA
							, 5	17×17	RFA
	ANSYS	WEC	AN						
							4		17×17 RFA
	,	WE	CAN	ANSYS				,	
	, ANSY	S	WECAN					1%	
							5		ANSYS
WECAN					,	6	ANSYS	17×17 RFA	
				. ,	ANSYS	ŀ	17×	17 RFA	
WECAN								가	

6.

ANSYS

,

- STANDARD REVIEW PLAN SECTION 4.2 APPENDIX A, Evaluation of F/A Structural Response to Externally Applied Forces, USNRC
- [2] WECAN User's Manual
- [3] ANSYS User's Manual
- [4] KNF-TR-FA2-04001, Rev.00, "ANSYS

", KNFC

1. BEAM Element

Item	WECAN	ANSYS	Remark
Element Name	STIF3	BEAM3	
Node	I, J	I, J	
Degree of Freedom	UX, UY, ROTZ	UX, UY, ROTZ	
Real Constants	AREA, IZZ, DEPTH	AREA, IZZ, HEIGHT,	
		SHEARZ, ISTRN, ADDMAS	

2. Contact Element

Item	WECAN	ANSYS	Remark
Element Name	STIF12	CONTAC12	
Node	I, J	I, J	
Degree of Freedom	UX, UY	UX, UY	
Real Constants	φ _{slide} , KN, Initial Interference,	THETA, KN, INTF, START, KS	
	Initial KTYPE, KS		

3. Sliding Element

Item	WECAN	ANSYS	Remark
Element Name	STIF39	CMBIN40	
Node	I, J	I, J	
Degree of Freedom	UX	UX, UY, UZ, ROTX, ROTY,	
		ROTZ, PRES, TEMP	
Real Constants	F _{slide} , D _{slide}	K1, C, M, GAP, F _{slide} , K2	

4. 17×17 RFA

Natural Frequency

		Domort				
Widde	Test Result	Test Result WECAN Result ANSYS Result				
1	3.65	3.66	3.67			
2	7.80	8.07	8.08			
3	12.30	12.84	12.84			
4	17.70	19.09	19.10			
5	24.20	24.93	24.93			
6	30.50	33.49	33.48			

Mode Shape

						Mode	Shape					
Part (Node)		1	2	2		3	2	4	4	5	(5
	WEC	ANS	WEC	ANS	WEC	ANS	WEC	ANS	WEC	ANS	WEC	ANS
TN (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Grid-8 (9)	0.010	0.010	-0.015	-0.015	0.021	0.021	0.027	0.027	-0.032	-0.032	0.033	0.033
Grid-7 (21)	0.455	0.455	-0.729	-0.730	0.984	0.984	0.916	0.918	-0.849	-0.848	0.587	0.587
IFM-3 (33)	0.614	0.614	-0.855	-0.856	0.890	0.889	0.454	0.454	-0.042	-0.041	-0.362	-0.362
Grid-6 (45)	0.753	0.753	-0.883	-0.883	0.571	0.570	-0.223	-0.224	0.797	0.797	-0.917	-0.917
IFM-2 (57)	0.859	0.859	-0.751	-0.751	0.016	0.015	-0.723	-0.724	0.708	0.707	0.092	0.092
Grid-5 (69)	0.943	0.943	-0.540	-0.540	-0.544	-0.545	-0.885	-0.886	0.118	0.117	1.000	1.000
IFM-1 (81)	0.985	0.986	-0.231	-0.230	-0.881	-0.881	-0.349	-0.348	-0.608	-0.608	0.203	0.203
Grid-4 (93)	1.000	1.000	0.112	0.114	-0.995	-0.994	0.362	0.364	-0.887	-0.886	-0.807	-0.807
Grid-3 (105)	0.883	0.882	0.924	0.926	0.059	0.061	1.000	1.000	1.000	1.000	0.447	0.447
Grid-2 (117)	0.580	0.579	1.000	1.000	1.000	1.000	-0.995	-0.998	-0.551	-0.552	-0.175	-0.176
Grid-1 (129)	0.032	0.031	0.028	0.027	0.073	0.072	-0.072	-0.070	-0.060	-0.058	-0.007	-0.005
P-Grid (141)	0.013	0.013	0.008	0.007	0.029	0.029	-0.025	-0.024	-0.021	-0.020	0.001	0.002
BN (152)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(a) ANSYS BEAM3 Element

(b) WECAN STIF3 Element

2-D Elastic Beam Element

(a) ANSYS CONTAC12 Element

2. ANSYS WECAN

(b) WECAN STIF12 Element

Contact Element

(b) WECAN STIF39 Element

- X

3. ANSYS WECAN Sliding Element

4. 17×17 RFA

5. 17×17 RFA

6. 17×17 RFA

ANSYS Modal