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ABSTRACT 
 
  To overcome the limitation of existing homogenization methods based on the single 
assembly calculation with zero current boundary condition, we propose a new 
rehomogenization method, named spectrum correction method (SCM), consisting of the 
multigroup energy spectrum approximation by spectrum correction and the condensed 
two-group heterogeneous single assembly calculations with non-zero current boundary 
condition. In SCM, the spectrum shifting phenomena caused by current across assembly 
interfaces are considered by the spectrum correction at group condensation stage at first. 
Then, heterogeneous single assembly calculations with two-group cross sections 
condensed by using corrected multigroup energy spectrum are performed to obtain 
rehomogenized nodal diffusion parameters, i.e., assembly-wise homogenized cross 
sections and discontinuity factors. To evaluate the performance of SCM, it was applied 
to the analytic function expansion nodal (AFEN) method and several test problems were 
solved. The results show that SCM can reduce the errors significantly both in 
multiplication factors and assembly averaged power distributions. 
 

I. INTRODUCTION 
 

Various nodal diffusion methods have been developed and widely used for the reactor 
core analysis and design due to its rapidity and low computational burden with 
acceptable accuracy. These methods are fundamentally relied on the nodal equivalence 
between the global heterogeneous solution and the global homogeneous solution for 



  

each node, which is typically fuel assembly. Thus, it is required to generate equivalent 
nodal diffusion parameters, known as homogenization procedure, for the perfect 
reproduction of the heterogeneous solution by the nodal diffusion calculation. However, 
it is well known that even though we can derive exact mathematical expressions for 
ideal homogenized parameters, there are some problems for applications to practical 
problems. However, there have been many efforts to develop practical homogenization 
methods. Among these, generalized equivalence theory (GET) [1] with single assembly 
homogenization method is a most popular one and has been used widely for nodal 
diffusion calculations. In this method, the heterogeneous solution required for the 
calculation of homogenized diffusion parameters is approximated by the solution of 
single assembly calculations with zero current boundary conditions. 

The method based on single assembly homogenization shows relatively good 
performance if the current effect at interfaces of the fuel assembly are negligible. But, if 
rapid flux gradients at interfaces of fuel assembly are involved, then it leads to very 
poor results of nodal diffusion calculation. This comes mainly from two main 
limitations of the existing single assembly homogenization methods. The first one is 
that multigroup neutron flux distribution used in group condensation and spatial 
homogenization cannot be a representative one for global heterogeneous system due to 
the use of unrealistic zero current boundary condition for single assembly calculation. 
The other one is that even though we have information on the interface currents in 
condensed group structure for each assembly coming from the nodal diffusion 
calculation, it is very difficult to consider this effect at the single assembly level 
calculation. 

To remedy the limitations above, we propose a new rehomogenization method based 
on the spectrum correction. There have been some approaches which also attempt to 
reflect the spectrum effect, that is the discrepancy in spectrum between the global 
heterogeneous calculation and single assembly calculations caused by interface currents, 
in the sense of spectrum correction. [2][3] However, these methods focused mainly on 
searching direct empirical correlations between homogenized two-group cross sections 
(or two-group cross section distribution within assembly) and various spectral states of 
fuel assemblies, possibly those of the global heterogeneous system. Thus, these methods 
require many lattice level calculations in advance. In addition, even though it can be 
done easily and is minor, it is also required to modify existing nodal diffusion code for 
its practical application. Also, discontinuity factors are not updated in these methods. 

Unlike these methods, we improve multigroup energy spectrum from that of single 
assembly calculation via spectrum correction using results of the prior nodal diffusion 



  

calculation. With resulting corrected spectrum, group condensation is done for pin-wise 
heterogeneous two-group cross sections. Then, heterogeneous two-group single 
assembly problems with non-zero current boundary conditions are solved to obtain the 
two-group flux distribution required for spatial homogenization. Finally, one-node nodal 
diffusion calculations are done to update discontinuity factors. From these procedures, 
we can obtain rehomogenized nodal diffusion parameters including updated 
discontinuity factors. It should be also noted that SCM requires neither any additional 
lattice level calculations nor modification of nodal diffusion code for its practical 
application. 
 

II. SPECTRUM CORRECTION METHOD FOR REHOMOGENIZATION 
 
II.1 The Spectrum Effect in Single Assembly Homogenization Method 
 

From the nodal equivalence theory, expressions for ideal homogenization parameters 
are 
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where i is assembly index, F and T are macro group index for fast and thermal groups, 
respectively. Eq.(1) includes two procedures of group condensation and spatial 
homogenization, and can be split into the following two equations : 
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In single assembly homogenization method, Eq.(1) is approximated by  
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where ( )SA
g rφ r  is a solution of single assembly calculation. Discontinuity factors are 

also calculated using the results of single assembly calculation as 
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where gφ%  and gφ  are surface average and volume average fluxes, respectively. By 

introducing discontinuity factors we may choose diffusion coefficients arbitrarily. Then, 
we can solve the nodal diffusion equation with these homogenized nodal diffusion 
parameters. 

As mentioned already, this homogenization method works relatively well in the 
conventional pressurized water reactor (PWR) analysis in which the flux distribution is 
usually smooth. But if advanced design features (such as mixed oxide (MOX) fuel, 
extensive use of burnable absorber, material zoning inside fuel assembly, and so on) are 
introduced it causes poor results in nodal diffusion calculation. [4] 

To illustrate the spectrum effect, we solved a sample problem consisting of UO2 and 
MOX assembly using the existing single assembly homogenization method and the 
nodal diffusion code AFEN. [5] Each assembly contains 17 fuel pins and pin-wise 
averaged flux distribution was compared. Figure 1 shows the configuration of the 
sample problem and Figure 2 shows the results of reconstructed flux distribution from 
the AFEN calculation. The reference solution was obtained by 45-group VENTURE 
calculation. As shown in Figure 2, maximum errors of thermal flux of each assembly 
occur near the assembly interface. This can be explained well by spectrum parameters, 
especially by the spectrum index (SI) defined as 

 
( )

( )  .
( )

g F

g T

r
r

r

φ

φ
∈

∈

Γ =
∑
∑

r

r
r  (7) 

 



  

Figure 3 gives the SI distribution of the reference and SA calculations. From Figure 3, 
we observe that as the discrepancy in SI between the reference and single assembly 
calculations increases, larger errors in thermal flux occur. Thus, we have to consider this 
spectrum effect caused by interface currents during the homogenization procedures to 
achieve accurate results by nodal diffusion calculation. 
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Figure 1. Configuration of a sample two-assembly problem. 
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Figure 2. Results of the sample problem : flux distribution. 
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Figure 3. Spectrum index distributions. 
 
II.2 Spectrum Correction 
 

The basic idea of SCM is that if we have approximated distribution of SI for global 
heterogeneous solution, we can approximate the multigroup energy spectrum by 
corrections on the spectrum obtained by single assembly calculation and resulting 
corrected spectrum could be representative of the global heterogeneous system. Once 
we solve a nodal diffusion problem, then we can obtain the knowledge about the 
multiplication factor, flux distribution, SI distribution, and boundary conditions at 
assembly interfaces. Thus, the prior nodal diffusion calculation can provide required 
data for fuel assembly rehomogenization. 

At first, the multigroup flux is separated into magnitude function f  and energy 
spectrum gϕ . 
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Substituting Eq.(8) into Eq.(3), we have 
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If we assume 
 ( ) ( ) ,het homf r f r=

r r  (10) 
Eq.(9) becomes 
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By spectrum correction, instead of evaluating multigroup flux, only energy spectrum 
is calculated to obtain spectrum corrected cross sections using Eq.(11). Then, the flux 
distribution required for spatial homogenization is obtained by two-group 
heterogeneous single assembly calculations. 
 
Leakage Correction 

It is well known fact that the effect of interface currents vanishes within a few mean 
free paths in diffusion theory. But, the region located far from the interface is also 
affected by interface currents and its effect is not negligible if heterogeneity inside the 
fuel assembly is considered. As shown in Figure 3, SI is almost constant at these regions 
and energy spectrum for these regions can be characterized by the types of material 
because change in energy spectrum within these regions is negligible for a given type of 
material. In these regions, the discrepancy of energy spectrum between the reference 
and single assembly calculations can be explained by the different resulting 
multiplication factors, and can be corrected by adjusting the uniform leakage rate. So, 
we named this correction procedure “leakage correction”. 

For a constant SI region, the leakage term in multigroup neutron diffusion equation 
can be expressed as 

 2 2 ,m m
g g g mD D Bϕ− ∇ =  (12) 

where m is material index. Therefore, the energy spectrum in the constant SI region can 
be found by searching material buckling mB , which satisfies the following equation : 
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  Using ,
B
g mϕ  obtained by solving Eq.(13), leakage correction is done as follows : 
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where ,
SA
g mϕ  and ,g mϕ∞  are the energy spectrum given by single assembly calculation 

and the one which satisfies Eq.(13) when mB  is equal to zero, respectively. In Eq.(13), 
multiplication factor of the global heterogeneous system is approximated by NC

effk  
which comes from the prior nodal diffusion calculation. If the fuel assembly is 
homogeneous, ,g mϕ∞  is the same with ,

SA
g mϕ , and ,

B
g mϕ  becomes leakage corrected 

energy spectrum. 
 

External Spectrum Source Correction 
After leakage corrections for all types of material, the effect of external spectrum 

source is considered and final corrected energy spectrum distribution ( )C
g rϕ r  is 

evaluated for all regions. During this correction, the spectral condition of the global 
heterogeneous system is reflected by SI distribution, ( )NC rΓ

r , calculated by the prior 
nodal diffusion solution. More precisely, the following condition is imposed on the 
external spectrum source correction. 
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Using leakage corrected spectra, the final corrected energy spectrum is given by 
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where a , and ,g mw  are correction factor and weight, respectively. m  and 'm  are 

material index and external spectrum source index at position rr , respectively. In 
Eq.(16), bar denotes that its summed value over all energy groups is normalized to unity. 
If we define normalized weight as 
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and use this normalized weight instead of ,g mw , then sum of corrected energy spectrum 
over all energy groups becomes unity. Then, Eq.(16) can be expressed as 

 , , , , '( ) ( ) ( ) .C LC NC LC LC
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If we use Eq.(18) for correction, the correction factor a  can be expressed in the 
following simple form, by summing Eq.(18) over macro group structure with the 
condition given in Eq.(15) : 
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Now, a remaining problem is the determination of weight for more effective spectrum 
correction. Figure 4 shows the 40’th group energy spectrum of the previous sample 
problem as a function of SI. As shown in the figure, energy spectrum within each 
assembly is almost linear to SI except in the very near proximity of the interface. If we 
do not use weight in Eq.(18), corrected energy spectrum will be determined along the 
dotted line in Figure 4. Thus, the optimal weight for external spectrum source correction 
can be expressed as  
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and r1 and r2 denote positions within uniform medium of material m. However, we 
cannot use optimal weight in practical situations because it requires knowledge of the 
global heterogeneous solution. 

From the investigation on various cases, it was observed that the following equation 
gives most accurate corrected energy spectrum : 
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Thus, weights calculated by Eq.(21) are used for numerical tests. 
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Figure 4. Energy spectrum distribution as a function of SI. 
 
Group Condensation with Corrected Energy Spectrum 
  By spectrum correction, we can obtain multigroup energy spectra for all regions. 
With this energy spectrum distribution, group condensation is performed to evaluate 
spectrum corrected two-group pin-wise heterogeneous cross sections, in which the 
spectrum effect is reflected, by following equation : 
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where j  is pin index. 
By definition of group condensed diffusion coefficient given by Eq.(2), it is obvious that 
diffusion coefficient must be condensed by current not by energy spectrum. Therefore, 
we use the following equation for evaluating condensed diffusion coefficient : 
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, , 2

,
( ) ( )

ˆ .
j

k j

C i het i C
g g gS VC ij k

g j j
k k

k k

J r dS D r dr
J

S S

ϕ⋅ − ∇
= =
∑∫ ∫

∑ ∑

rr r r r

 (24) 

From multigroup diffusion equation, the numerator in Eq.(24) can be calculated by 
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II.3 Generation of Rehomogenized Assembly Parameters 
 

In SCM, flux distributions required for spatial homogenization is obtained by two-
group, heterogeneous, single assembly calculations with spectrum corrected cross 
sections and albedo boundary conditions. We performed these calculations via fine 
mesh FDM solution method. Albedo boundary conditions for each assembly are 
provided by the prior nodal diffusion calculation and defined as 
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  Once these calculations are done, rehomogenized cross sections can be obtained by 
Eq.(4) using the two-group heterogeneous flux distribution. Finally, to update 
discontinuity factors, homogeneous one-node calculations for each assembly are 
performed with rehomogenized cross sections by nodal solution method, which should 
be the same with that used for global homogeneous calculation. 
 

III. NUMERICAL TESTS AND RESULTS 

We applied this rehomogenization method to the AFEN code and test problems were 
solved to evaluate its performance. All test problems are pin-wise homogenous. Table I 
gives data for pins and fuel assemblies. Lattice configurations are given in Figure 5. 

Pin-wise homogeneous 45 group cross section data were generated by the transport 
theory code HELIOS. [6] All heterogeneous multigroup calculations for reference 
solution and single assembly homogenization were done by VENTURE with 45 group 
cross sections and 6×6 mesh division per pin. Rehomogenization of fuel assembly was 
carried out using the results of AFEN calculation with homogenized diffusion 
parameters by single assembly homogenization method, called AFEN-SA. From AFEN-
SA calculation, the detailed pin-wise data were reconstructed by a form function method. 



  

Figures 6 and 7 show the configuration of the problems and results of test problems 1 
and 2. To induce large amount of interface currents, problems including burnable 
absorber (BA) loaded assembly and MOX assembly were configured. Figures 6 and 7 
show that rehomogenization method based the spectrum correction method reduces the 
errors significantly both in multiplication factor and assembly averaged power. 

Test problems 3 and 4 are small core problems. The homogenized diffusion 
parameters of reflector region were generated by two-assembly calculation consisting of 
peripheral fuel assembly and reflector. In SCM, rehomogenization of reflector region 
was not considered. 

The configuration and results are given in Figures 8 and 9. In test problem 3, the error 
in multiplication factor by AFEN-SCM is over 0.1% but the error is reduced by a factor 
of 3 compared with the result of AFEN-SA. The large error of AFEN-SCM in assembly 
averaged power is also found in test problem 4 at peripheral assembly. However, we 
find that AFEN-SCM gives much better results than AFEN-SA. 
 

Table I. Data for Pin and Fuel Assembly 
- Lattice : 17×17 - Assembly Pitch : 21.42 cm 
- Pin Pitch : 1.26 cm - Number of Waterhole : 25 
- Type of Pin : 

UO2 : 2.0 wt%, 3.0 wt%, 4.0 wt%
MOX : 7.0 wt% 
BA (gadolinia) 
Waterhole 
Reflector 

- Types of Assembly 
  UOX-2 (2.0 wt% UO2) 

UOX-3 (3.0 wt% UO2) 
UOX-4 (4.0 wt% UO2) 
MOX-2 (7.0 wt% MOX) 
UBX-3 (3.0 wt% UO2, BA) 

 

 
(a) Fuel assembly without BA          (b) Fuel assembly with BA 

Figure 5. Lattice configuration of fuel assemblies. 
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Figure 6. Configuration and result of test problem 1. 
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Figure 7. Configuration and result of test problem 2. 
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Figure 8. Configuration and result of test problem 3. 
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Figure 9. Configuration and result of test problem 4. 
 



  

IV. CONCLUSIONS 
 

To obtain more accurate results by nodal diffusion calculation, we proposed a new 
rehomogenization method, named spectrum correction method, based on multigroup 
energy spectrum correction and two-group heterogeneous single assembly calculation 
with non-zero current boundary condition. SCM does not require additional lattice level 
calculation and it can be directly applied to existing nodal diffusion calculation scheme 
without any difficulties. 

To evaluate its performance, we applied SCM to the AFEN method and solved 
several test problems. The results of numerical tests show that SCM gives much better 
results than existing homogenization methods using single assembly calculation with 
zero current boundary condition and can significantly reduce the error of nodal diffusion 
calculation both in multiplication factor and assembly averaged power. From the results, 
we can ascertain that the spectrum effect caused by interface currents can be 
successfully taken into account by SCM. 
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