Fabrication of sintered duplex burnable absorber pellets

2004

가

150

Abstract

Crack formation has been investigated in a duplex burnable absorber pellet, which is composed of two different materials; $UO_2-10wt\%Gd_2O_3$ in core and $UO_2-2wt\%Er_2O_3$ in shell. Cracks propagated from the core-shell interface to the both region in the undoped pellet. The crack formation could be attributed to the backstress, which results from the differential densification between the core and the shell. Small amounts of MnO considerably affect the densification rate of $UO_2-10wt\%Gd_2O_3$. The densification rate of $UO_2-10wt\%Gd_2O_3$ was accelerated with the content of MnO. The sintered core-shell interface was joined without cracks by adding 0.1wt% MnO to the core material.

U235가

1.

 UO_2 가 (gadolinium) . UO_2 가 (erbium) 가 UO_2 . 가 Gd 가 Er • $(U,Gd)O_2$ $(U,Er)O_2$, (U,Gd)O₂ . UO₂ $(U,Er)O_2$ Gd_2O_3 UO_2 - Gd_2O_3 UO_2 - Er_2O_3 Er_2O_3 . 가 1600°C-1800°C 2-4 Gd Er UO₂ 가 [1] $(U,Gd)O_2$ $(U,Er)O_2$. 가 . , 가 (duplex pellet) . 가 .[2] UO_2 -2wt% Er_2O_3 UO_2 UO_2 - $10wt\%Gd_2O_3$ UO_2 1200–1500°C Gd_2O_3 가 UO_2 Gd_2O_3 . Gd_2O_3 .[3-5] 가 . 가 2. UO_2 Er_2O_3 2wt% tubular UO_2 1 . 가 1 tubular (MnO) Gd_2O_3 10wt% 10 . MnO가 가 Gd_2O_3 MnO Gd_2O_3 12 .

1 $UO_2-2wt\% Er_2O_3$ $UO_2-10wt\%Gd_2O_3$ 가 3 ton/cm^2 . . 1700°C, H₂-3%CO₂ 4 Dilatometer 8 mm 2.85 g 10 mm . 1650°C 5 K/min 가 dilatometer push-rod . 가 가 LVDT , 가 cycle . 3. 2 $2wt\% Er_2O_3$ 7 UO_2 UO₂-10wt% Gd₂O₃ 3 . 가 0.1 wt% MnO MnO 가 . . 가 MnO 4 UO₂-10wt%Gd₂O₃, . UO_2 -2wt% Er_2O_3 . $UO_2\text{-}10wt\%Gd_2O_3$ 1510°C $UO_{2}-$

2wt%Er₂O₃ 1220°C 7t . /

,

.

,

		가								가
MnO 가		$UO_2-10wt\% Gd_2O_3$				$UO_2-2wt\% Er_2O_3$				
				151(Mn	0	가	
UO_2 -10Wt%Gd ₂ O ₃				1510	50					
MnC)가	가	UO ₂ -10)wt%Gd ₂ O ₃			가		가	
				가	0.	1 wt%	MnO	가		
				가 1280)°C					
U			$UO_2-2wt\% Er_2O_3$			220°C				
			MnO	0.1 wt%		가				

•

4. $UO_2-10wt\%Gd_2O_3$, UO₂-2wt%Er₂O₃ 가 dilatometer UO_2 -2wt% Er_2O_3 UO_2 $UO_2\text{-}10wt\%Gd_2O_3$ UO_2 Gd_2O_3 1200-1500°C 가 . 가 $UO_2-10wt\%Gd_2O_3$ MnO 가 dilatometer . MnO 가 가 가 가 $UO_2-Gd_2O_3$ 0.1 wt% MnO

•

.

 1.
 :
 , KAERI/RR

 2023/99, 2000.
 .
 .

 2.
 :
 , KAERI/RR

 2323/2002, 2003.
 .
 .

3. R. Manzel and W. O. Dörr, "Manufacturing and Irradiation Experience with UO₂/Gd₂O₃ Fuel," *Am. Ceram. Soc. Bull.*, **59** 601-603 (1980).

- **4.** S. M. Ho and K. C. Radford, "Structural Chemistry of Solid Solutions in the UO₂-Gd₂O₃ system," *Nucl. Tech.*, **73** 350-360 (1986).
- **5.** R. Yuda and K. Une, "Effect of Sintering Atmosphere on the Densification of UO₂-Gd₂O₃ compacts," *J. Nucl. Mater.*, **178** 195-203 (1991).

 $2. \ UO_2 - 10wt\% Gd_2O_3/UO_2 - 2wt\% Er_2O_3$

3. 0.1wt% MnO 7 UO₂-10wt%Gd₂O₃/UO₂-2wt%Er₂O₃

4. MnO 기