'2004

가 가 UO2-6wt%Gd2O3

Effects of Oxygen Potential and Dopant on the Sintering Properties of UO₂-6wt%Gd₂O₃ Pellet

, , , , , , 150

가 가 UO₂-6wt%Gd₂O₃, . AI(AI₂O₃) 100ppm 가 UO₂-6wt%Gd₂O₃ (94.6%) (4.2µm) , (CO₂/H₂)가 3x10⁻² 가 96.2% 12µm 가 ,

.

Abstract

The effects of oxygen potential and small amounts of dopants on the pellet properties such as density, grain size and microstructure have been investigated in UO₂- $6wt\%Gd_2O_3$ pellets. The Al(100ppm)-doped UO₂- $6wt\%Gd_2O_3$ pellet shows low density(94.6%) and small grain size(4.2µm) in dry hydrogen atmosphere. However, the density and grain size considerably increased up to 96.2% and 12µm, respectively in H₂- $3\%CO_2$ atmosphere. Grain size remains unchanged and density slightly decreased with increasing the content of CO₂ in sintering atmosphere.

1.

 UO2-Gd2O3
 가
 가
 [1,2,3].

 Gd3O3
 가
 가

. UO_2 -Gd₂O₃ 4~10wt% 가 UO₂ 가 , UO₂ . , UO_2 -Gd₂O₃ UO_2 UO_2 가 , [4]. 가 Al₂O₃ Al₂O₃-SiO₂가 UO_2 - Gd_2O_3 (impurity limit) , 가 $(RTInP_{O2})$ 1750°C -420 ~ -360KJ/mole $UO_2 - Gd_2O_3$ 가 Nb₂O₅, TiO₂, Al₂O₃, Cr₂O₃ 가 , 가 [5,6]. , 가 UO_2 - Gd_2O_3

가 가 UO₂-6wt%Gd₂O₃

2.

IDR-UO₂ Gd₂O₃ 6 %, scrap M₃O₈ 10 % 가 (dopant) tumbling 1 attrition mill . (AZB) 0.6 % 가 1 , 1 ton/cm² 3 ton/cm² (granulation) . 가 Al₂O₃, Al₂O₃-SiO₂, Cr₂O₃-SiO₂ 가 150ppm (metal/(U+Gd)) . , AI_2O_3 가 300ppm 1730°C 4 (dry , hydrogen) CO₂ CO_2 "). (*CO*₂/*H*₂ " 3, 6, 10 % (dew 가 5x10⁻⁴ . H₂ CO₂ point) -30°C , $CO_2 + H_2 \longrightarrow CO + H_2O$

 $H_2O + H_2 \longrightarrow H_2 + 1/2O_2$

SOLGASMIX [7].

, CO₂ 1250°C 2 , ,

3.

AI(AI₂O₃) 100ppm (AI/U+Gd) 가 (CO_2/H_2) () UO_2 -6wt%Gd₂O₃ 94.7%, 1 4.2 μm . 3x10⁻² 가 96.2% . , 3~6x10⁻² 가 . 12µm , 가 1x10⁻¹ 가 가 가 . UO_2 - Gd_2O_3 3~6x10⁻²

2 3 가 UO_2 -6wt%Gd₂O₃ . 가 , 가 90.1% 3.1µm 3x10⁻² 가 95.5% .

.

가 5μm . Al 가 300ppm 100ppm 가

1.5% 가 , 3x10⁻² AI 가 가 spec. (250ppm) 가 . AI 100ppm . 가 Al-Si 2 AI 가 1.5% 3x10⁻² AI 가 . 가 . , Cr-Si 2 가 가 , 가

> 3.0μm . , 3x10⁻² 가 90.8%

가 가 가 AI 96% 11.6μm . 가 , AI 100ppm 가, Cr(100ppm)-Si(40ppm) 가 Al(100ppm)-Si(40ppm) 가 4(a), 가 (b), (c), (d) . 가 (4-a) Cr-Si 2 (4-c) 2µm AI 가 (4-b) AI-Si 2 가 (4-d) . 가 2µm . . 가 5(a), (b), (c), (d) 4 가 Al Al-Si 가 (5-b, 5-d) 가 Cr-Si 가 5µm 가 가(1μm) . 6(a), (b), (c), (d) 가 , Al 100ppm 가, Cr(100ppm)-3x10⁻² Si(40ppm) 가 Al(100ppm)-Si(40ppm) 가 가 . 가 가 2μm . 7(a), (b), (c), (d) 6 . 가 가 4μm 가 12µm . 가 가 UO₂-Gd₂O₃ . 가 , diffusivity 가 가 . diffusivity 가 UO₂-Gd₂O₃ . ,

AI, Cr-Si, AI-Si 7 2 UO₂-Gd₂O₃

.

AI

AI-Si

· , 가

,

	, UO ₂ -Gd ₂ O ₃									
フ	ŀ									
4.										
(1)	가			,				(90	.1%)	(3.1
μm)					가				95.5%	
		5 µm								
(2)	AI	100ppm	가	,			UO_2 - Gd_2O_3			
	94.6%	4.2μm			가 3x	10 ⁻²			96.2%	12µm
					가		3~6x10 ⁻²			
	가	,	가 1x	10 ⁻¹	가				가	
(3)	AI-Si	가		3x10 ⁻²	ļ	41		가		, Cr-Si
フ	ŀ			ŀ	AI	가				,
	3x10	-2	AI	가						

- [1] S.M. Ho and K. C. Radford, Nuclear Techology, 73 (1986) 350
- [2] Hubert H. Davis et al., Mater. Sci. Res., 11 (1974) 515.
- [3] , , " 가 ", 11 (1996) 335
- [4] H. Assmann and H. Bairiot, "Process and Product Control of Oxide Powder and Pellets for Reactor Fuel Application," in Guide Book on Quality Control of Water Reactor Fuel, Tech. Report series No. 221, IAEA, Vienna, (1983)
- [5] H. Assmann, M. Peehs and H. Roepenack, "Survey of binary oxide fuel manufacturing and quality control," J. Nucl. Mater. 153, 115 (1988).
- [6] K.W. Kang, K.S. Kim, K.W. Song, J.H. Yang, and Y.H. Jung, "Effect of TiO₂ and AI(OH)₃ on Sintering Behavior of UO₂-Gd₂O₃ Fuel Pellets," J. Korean Nucl. Soc. 32,(2000).
- [7] HSC Chemistry for Windows, 1994, Outokump research.

1. AI 100ppm 가 UO₂-6wt%Gd₂O₃

 $UO_2\hbox{-} 6wt\%Gd_2O_3$

 UO_2 -6wt% Gd_2O_3

 4.
 UO2-6wt%Gd2O3

 (a) without dopant
 (b) AI 100ppm

 (c) Cr(100ppm)-Si(40ppm)
 (d) AI(100ppm)-Si(40ppm)

- (c) Cr(100ppm)-Si(40ppm)
- (a) without dopant
- (d) AI(100ppm)-Si(40ppm)

(b) AI 100ppm

7.

- 3x10⁻²
- $UO_2\text{-}6wt\%Gd_2O_3$

- 3x10⁻² (a) without dopant (c) Cr(100ppm)-Si(40ppm)
- (b) AI 100ppm (d) AI(100ppm)-Si(40ppm)

