

Abstract

Grain growth behaviors have been investigated in the UO_2 pellets which comprise IDR- and AUC-derived uranium dioxide powders and various seed crystals. Four different seed crystals were made depending on the starting powders and the sintering conditions and then embedded in IDR- and AUC-derived uranium dioxide compacts. Compacts were sintered at 1700°C in H_2 atmosphere or at 1100°C in CO_2 atmosphere for 4 h. Almost all samples showed normal grain growth behaviors. However, the abnormal grain growth was observed when AUC UO_2 compact containing H_2 -sintered seed was sintered in CO_2 atmosphere. This result may be attributed to the powder characteristics of the matrix and the O/U ratio gradient in the interface region between the matrix and seed crystal.

2004

/

2

가 . .

, 7ト UO₂ , . 1700°C, 4 8 μm

UO2 フト, O/U . フト . フト . O/U

2.0 2.15 . O/U 7

.

1.

2.

2-1.

UO_2 1 ton/cm ²				. IDR-, AUC UO ₂ CIP(Cold Isotatic Press) 3 ton/cm ²			
1900 4	, AUC	,	, 1500	IDR	・ , アト	4 가	,
			1mm	2mm			

2-2.

	12.02φ	1 ton/ cm ²		
	CIP(Cold Isotatic Press)	3 ton/cm ²		
1100 ,	4	,		가
1050				

. , 1700 , 4 .

1300 ,

 3.

 1

 . IDR, AUC
 UO2

 7, 1900°C, 1500°C, 1500°C, 4

 4
 .

רי 1700°C, , 1100°C, ,

.

가 AUC UO₂ 2가 • O/U 가 . O/U . O/U 3 1700°C 4 . 2-3 4 , 1100°C 4

,

. ,

가

 Srolovitz [5]

 7 +
 7 +

 monte carlo
 .
 BNFL [6]
 UO2

 3
 .
 .

, 1100°C 4 . IDR UO₂

. , AUC UO₂

μm	2 AU	С UO ₂	1100°C		
. , 0/0	J	UO ₂			가
7	TGA 6	CO ₂ -0.28%C O/U	O , 1200° O/U	C 25	0/U 0/U 6
	O/U		가	가,	가
		AUC UO ₂	• •		O/U
O/U 가 AUC Song [4] 4	C UO ₂ . Song AUC UO ₂	[4] 800°C		가 가	
가			AUC UO ₂		O/U O/U
4. UO ₂		·	가, O/U	가	O/U 가
O/U		가			,

AUC UO₂

- W. A. Kaysser, M. Sprissler, C. A. Handwerker and J. E. Blendell, J. Am. Ceram. Soc., 70 (1987) 339.
- 2. S. K. Kwon, S. H. Hong and D. Y. Kim, J. Am. Ceram. Soc., 83 (2000) 1247.
- 3. H. Assmann, W. Dörr and M. Peehs, J. Nucl. Mater., 140 (1986) 1.
- 4. K. W. Song, D.-S. Sohn and W. K. Choo, J. Nucl. Mater., 200 (1993) 41.
- 5. D. J. Srolovitz, G. S. Grest and M. P. Anderson, Acta metal., 33(1985) 2233.
- 6. G. A. Wood, US patent 5061434, 1990.

a) AUC sintered (1100 , CO₂, 4h)
 b) IDR sintered (1100 , CO₂, 4hr)
 c) AUC sintered (1700 , H₂, 4h)
 d) IDR sintered (1700 , H₂, 4hr)
 2.

a) AUC matrix AUC(H₂, 1900) seed sintered 1700
 b) AUC matrix IDR(H₂, 1900) seed sintered 1700
 c) IDR matrix AUC(H₂, 1900) seed sintered 1700
 d) IDR matrix IDR(H₂, 1900) seed sintered 1700
 3. H₂ /H₂

a) AUC matrix AUC(CO₂, 1500) seed sintered 1100
c) IDR matrix AUC(CO₂, 1500) seed sintered 1100

b) AUC matrix IDR(CO₂, 1500) seed sintered 1100
d) IDR matrix IDR(CO₂, 1500) seed sintered 1100

4. CO₂ /CO₂

a) AUC matrix AUC(CO₂, 1500) seed sintered 1700
b) AUC matrix IDR(CO₂, 1500) seed sintered 1700

5. H₂ /CO₂

a,b) AUC matrix AUC(H₂, 1900) seed sintered 1100 **e**) IDR matrix AUC(H₂, 1900) seed sintered 1100

c,d) AUC matrix IDR(H₂, 1900) seed sintered 1100
f) IDR matrix IDR(H₂, 1900) seed sintered 1100

6. CO_2 /H₂

