

,

(

,

)

Abstract

One-dimensional thermal-hydraulic analysis computer codes were developed for the thermal sizing and performance analysis of a Combined Steam Generator-IHX Heat Exchanger (Integrated Type). The flow regions of water/steam side were divided into four regions, which are sub-cooled, saturated, film boiling, and super-heated regions. Sodium flows inside hot side tube and feed water is provided into the cold side tube. Pb-Bi is used for shell side coolant and flows by a circulating pump.

/

1.

,

(Intermediate Heat Transport System) 가 / 가

가 -가 . (tube banks) / 가 ,

, . Miyazaki Horiike (Advanced Intermediate Heat 1),2), Exchanger) / , ,

, , , (Shell) (buckling) Kinoshita et al. Innovative Heat -Exchanger 240 MW 50 MW 가 -10 - 20 %

3), 4)

가

,

.

.

가

.

.

5).

/

2.

,

1

,

가

가 . 가 가 가 가 가

.

1

,

가

.

2 가 180 ° 가

.

3. 7ŀ . ,

(homogeneous)

1

.

3.1	
(가)
,	
V	$v_s = const.$
V	$v_w = const.$
	, W_s : shell side flow rate, W_w : tube side flow rate
()

(control volume) 7 . , 7 . , 7 .

$$\Delta p = \Delta p_{acc,i} + \Delta p_{fric,i} + \Delta p_{grav,i}$$

, $\Delta p_{acc,i}$: accelerational pressure drop

$$= \left(\frac{G_w^2}{\rho}\right)_i - \left(\frac{G_w^2}{\rho}\right)_{i-1}$$

 $\Delta p_{fric,i}$: frictional pressure drop

$$= f \frac{\Delta L_l}{d_i} \frac{G_w^2}{2\rho_l} + f \frac{\Delta L_{2\phi}}{d_i} \overline{\phi}_{lo}^2 \frac{G_w^2}{2\rho_f} + f \frac{\Delta L_g}{d_i} \frac{G_w^2}{2\rho_g}$$

 $\Delta p_{grav,i}$: gravitational pressure drop

$$= \rho_l g \Delta L_l + \left\langle \overline{\rho} \right\rangle g \Delta L_{2\phi} + \rho_g g \Delta L_g$$

 $\overline{\phi}_{lo}^2$: two-phase multiplier

 $\left\langle \overline{\rho} \right\rangle_i = \frac{\left\langle \rho \right\rangle_i + \left\langle \rho \right\rangle_{i-1}}{2}$: average density for the i-th control volume

•

.

$$\langle \rho \rangle_i = \frac{1}{v_f + \langle x \rangle_i v_{fg}}$$
: average density for the i-th node

()

(control volume)

,

$$\Delta Q = U \,\Delta A_o \Delta T_o$$

$$\Delta Q = w_s \left(h_{s,in} - h_{s,out} \right) \qquad .$$

$$\Delta Q = w_w \left(h_{w,out} - h_{w,in} \right)$$

$$, \ \Delta T_o:$$

$$= \frac{\left(T_{s,in} + T_{s,out} \right)}{2} - \frac{\left(T_{t,in} + T_{t,out} \right)}{2}$$

$$\Delta A_o:$$

$$= \pi d_o \Delta L$$

(fouling regions)

(fouling)

$$\Delta Q = h_s \Delta A_o (T_s - T_{Fs}) = h_{Fs} \Delta A_o (T_{Fs} - T_o)$$
$$= \Delta A_o \frac{2k}{d_o} \frac{T_o - T_i}{\ln\left(\frac{d_o}{d_i}\right)}$$
$$= h_{Fw} \Delta A_i (T_i - T_{Fw}) = h_w \Delta A_i (T_{Fw} - T_w)$$

U (overall heat transfer coefficients)

•

-

.

$$U = \frac{1}{\frac{1}{h_s} + \frac{1}{h_{Fs}} + \frac{d_o}{2k} \ln\left(\frac{d_o}{d_i}\right) + \frac{d_o}{d_i} \frac{1}{h_{Fw}} + \frac{d_o}{d_i} \frac{1}{h_w}}{3 \quad 1}$$

•

3

,

, ,

. 1,

. Fouling factor / 25,000 W/m²-°C

1.	
sub-cooled region	Mori-Nakayama
saturate boiling region	Chen
film boiling region	Bishop et al.
super-heated region	modified Bishop et al.
critical heat flux	Duchatelle et al.
Pb-Bi	Dwyer
sodium	Lubarsky-Kaufman

friction factor	Mori-Nakayama		
two-phase friction multiplier	homogeneous equilibrium model		
	2-1/4Cr-1Mo, SUS304, SUS316		
	(SCC : Stress Corrosion Cracking) 2-1/4Cr-1Mo		
3.3			
가	, IHX SG		
(1)	, , , , , , ,		
	, 가,,		
48			
(3)			
, , ,	, / (fouling factor) , U(overall heat transfer coefficients) .		

.

.

,

.

.

$\Delta Q = U \,\Delta A_o \,\Delta T$

(4)

(5)

, (6)

. (7) (3), (4), (5), (6)

$$\left|\frac{T-T^{old}}{T}\right| < \varepsilon, \quad \left|\frac{P-P^{old}}{P}\right| < \varepsilon, \quad \varepsilon = 1.E-5$$
(8)
(7)
, .

.

	SG		IHX
(4)	•	

.

(1)					
SG		IHX			
(2) IHX					
IHX					
IHX					Iŀ
(3) SG					
IHX			SG		
	SG				
(4)					
SG			IHX		
	IHX				
			(5)	

 $\left|T-T^{old}\right|<\varepsilon, \quad \varepsilon=0.001,$

IHX

,

.

,

,

,

•

,

,

가

.

/

IHX

SG

4.

200 MW

3, 4

15.5 MPa

2¼ Cr-1Mo

SS304

,

3

	fluid	sodium	
hot fluid	inlet temp. []	530	
	flow rate [kg/s]	1,071.5	
	fluid	water/steam	
cold fluid	inlet temp. []	230	
	flow rate [kg/s]	87.725	
1	fluid	Pb-Bi	
meaium fluid	flow rate [kg/s]	optimized condition	

,

. 5)

.

	1	
	Single - Region	Double - Region
	Integrated	Integrated Type
Parameters	Туре	
hot tube OD, m	0.025	0.025
cold tube OD, m	0.025	0.025
hot tube t, m	0.0008	0.0008
cold tube t, m	0.003	0.003
hot tube length, m	50.0	43.0
cold tube length, m	50.0	43.0
hot bundle height, m	8.9	13.1
cold bundle height, m	8.9	13.1
bundle region height, m	8.9	13.1
hot tube Pitch/OD, (R-plane)	1.5	1.5
cold tube Pitch/OD, (R-plane)	1.5	1.5
number of tube rows,inner	33	15
number of tube rows,outer	-	7
number of hot tubes	416	365
number of cold tubes	415	360
number of tubes	831	725
number of tubes.inner/number of tubes.outer	-	0.55
shell ID, m	2.96	2.34
Pb-Bi mass flow rate, kg/s	1,210	1,100
Q: heat transfer rate, MW	200.0	200.1

,

4.1

()

1,200 kg/s

, 5

,

5

heat transfer rate [MWt]	203.2
Pb-Bi mass flow rate [kg/s]	1200.
steam exit temp. []	501.9
Pb-Bi inlet temp. []	520.5
Pb-Bi outlet temp. []	520.5
IHX side heat transfer area [m ²]	1,632.8

4

SG side heat transfer area [m ²]	1,628.9
shell side velocity [m/s]	0.05
sodium side pumping power [KW]	874.7
Pb-Bi side pumping power [KW]	1.5
water/steam side pumping power [KW]	11.9
shell diameter [m]	2.96
volume [m ³]	61.41
heat transfer rate per unit volume [MWt/m ³]	3.32

	6

6

heat transfer rate [MWt]	197.3
Pb-Bi mass flow rate [kg/s]	400.
steam exit temp.(inner/outer) []	453.9/517.5
steam flow rate(inner/outer) [kg/s]	51.52/36.205
inner region Pb-Bi inlet temp. []	347.6
outer region Pb-Bi outlet temp. []	504.2
IHX side heat transfer area [m ²]	1232.1
SG side heat transfer area [m ²]	1215.2
shell side velocity(inner/outer) [m/s]	0.07/0.09
sodium side pumping power [KW]	972.03
Pb-Bi side pumping power [KW]	0.36
water/steam side pumping power [KW]	12.63
shell diameter [m]	2.34
volume [m ³]	56.
heat transfer rate per unit volume [MWt/m ³]	3.52

9.1 MW

5.

1

 K. Miyazaki, H. Horiike, T. Umeoka, J. Orita, K. Hamada and T. Sano, 1996, "Advanced IHX-SG combined FBR System Designs and Basic Experiments", 10th Pacific Basic Nuclear Conf., Kobe, Japan, pp.769-778.

.

•

- [2] H. Horiike, S. Inoue, S. Miyamoto, K. Miyazaki, No. Yamaoka, K. Fujimori, T. Iitsuka, M. Morimoto, J. Orita, N. Sawa and M. Tamaki, 2003, "Advanced intermediate heat exchanger for FBR", 11th International Conference on Nuclear Engineering, Tokyo, Japan.
- [3] I. Kinoshita, Y. Nishi and M. Furuya, 1995, "Fundamental Heat Transfer Characteristics of a Direct Contact Steam Generator for Fast Breeder Reactor", 3rd JSME/ASME Joint Int. Conf. on Nuclear Eng., Kyoto, Japan, Vol.1, pp.11-16.
- [4] I. Kinoshita and Y. Nishi, 2000, "Innovative Heat Exchanger", 10th Int. Conf. on Emerging Nuclear Energy Systems, Petten, NRG.
- [5] Hahn D.H. et al, 2002, "KALIMER Conceptual Design Report", KAERI/TR-2204/2002, KAERI.

가