A Study on A Fault Diagnosis Method Using Influence Diagrams

, ,

17

7\ (Emergency Operating Procedure)

,

.

·

·

(SBLOCA) (SGTR)

Influence Diagrams Fuzzy

Logic .

가

Abstract

In complex systems, it is necessary to model a logical representation of the overall system interaction with respect to the individual subsystems. In this study the Influence Diagram has been especially applied for modeling EOPs (Emergency Operating Procedures) and fault process for a strange event. Fuzzy Logic is also used for quantification and selection of the probable success path in systems under abnormal situations in order to diagnose the faults and to analyze causes of the situations. This methodology using Influence Diagrams and Fuzzy theory has been applied for representing the dependency behavior (feedback and dependency, etc) and uncertain behaviors of complex systems, In this study, a methodology to diagnose the confusing faults such as SGTR and SBLOCA has been introduced and applied.

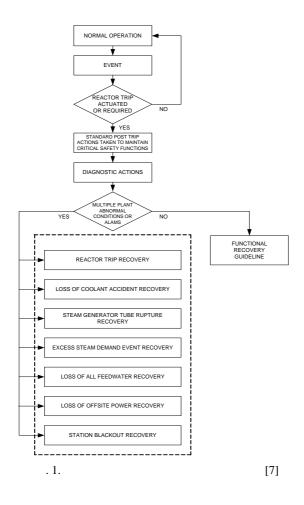
1.

. IAEA 10E-1 [1]. 가

, SGTR, SBLOCA

2.

. 가 가 [2].


, 7\text{}
. Standard Post Trip Actions, Diagnostic Actions,
Optimal recovery procedure, Functional recovery Procedure 47\text{}

1 . (Standard Post Trip Actions : SPTA)

, 가 가 .

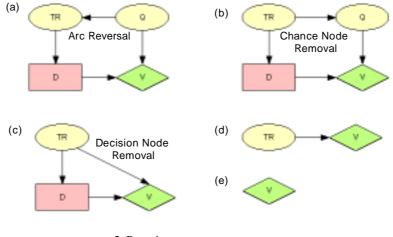
. SGTR, SBLOCA

2

3.

.

(Influence Diagrams) .


가 (Networks) . 가

가 . Bayesian 가

가 .

가 가 (Value Node)

, (Arc Reversal X Y , X Y 7 , 7 , Y X

. 2. Bayesian

4.

4.1

4

가 가 . 가 (2,250psia) (1,070psia) 가 가 가 가 가 가 가 [7]. [8]. (SG_pres) (RCS_pres)

(MS_iso_sig) . evidence "high", "no change", "low"

RCS_pres_sensor SG_pres Diagnosis

MS_jso_sig_sensor

.3. , ,

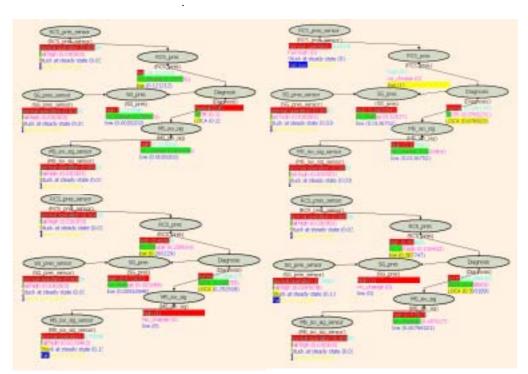
.1.

1.	Diagnosis	
2.	RCS_pres	RCS
3.	SG_pres	S/G
4.	MS_iso_sig	
5.	RCS_pres_sensor	RCS
6.	SG_pres_sensor	S/G
7.	MS_iso_sig_sensor	

5

4.2

(SG_pres)


 "no change"
 "normal"
 . E

 ...
 ...
 RCS_pres

 "low"
 LOCA
 ...
 ...

 7h
 7h
 7h
 7h

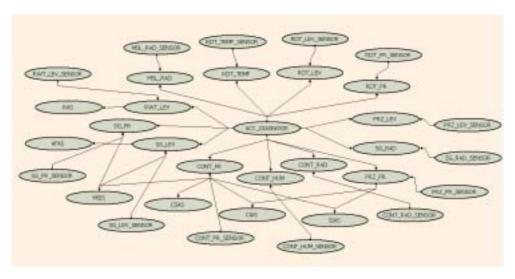
 "MS_iso_sig"
 "high"
 SGTR
 ...

. 4.

-02 ""

SBLOCA SGTR

. ,


, SBLOCA, SGTR . " " FSAR(Final Safety Analysis

Report) .

.2.

ACC_DIAGNOSIS		SG_PR_SENSOR	
RDT_PR		SG_LEV_SENSOR	
RDT_LEV		SG_RAD_SENSOR	
RDT_TEMP		CONT_PR_SENSOR	
SG_PR		CONT_HUM_SENSOR	
SG_LEV		CON_RAD_SENSOR	
SG_RAD		PRZ_PR_SENSOR	가
CONT_PR		PRZ_LEV_SENSOR	가
CONT_HUM		RWT_LEV_SENSOR	
CON_RAD		RAS	
PRZ_PR	가	AFAS	
PRZ_LEV	가	MSIS	
RWT_LEV		CSAS	
RDT_PR_SENSOR		CIAS	
RDT_LEV_SENSOR		SIAS	
RDT_TEMP_SENSOR			

가 Influence Diagram 가 .

. 5. Influence Diagram

5.

가

, SGTR,

SBLOCA

iTRS

- [1] Reactor Safety Study, WASH-1400, 1975. [2] , " 3&4
- [3] R. D. Shachter, "Evaluating Influence Diagrams," Operational Reseasrch, Vol. 34, No. 6, p. 871, 1996.
- [4] Moosung Jae, George E. Apostolakis, "The Use of Influence Diagrams for Evaluating Severe Accident Management Strategies", Nuclear Technology, vol.99, No.2, pp. 142-157, 1992.
- [5] S. Holzman, Intelligent Decision Systems, Addison-Wesley, New York, 1999.
- [6] R. D. Shachter, "Probabilistic Influence Diagrams, Belief Nets and Decision Analysis" Operational Reseasrch, Vol. 36, No. 1, p. 589, 1998.
- , "Ulchin Units 3&4 Final Safety Analysis Report", 1997.
- [8] Dohyoung Kim, "Bayesian Belief Network (BBN)-based Advisory System Development for Steam Generator Replacement Project Management", MIT, 2002.
- [10] Moon, J.H., Kang, C.S., Use of fuzzy set theory in the aggregation of expert judgments. Annals of Nuclear Energy 26 (6), 461, 1999.