APR1400

Hydrogen control in the APR1400 Containment for the Hypothetical Station Blackout Accident

Abstract

Advanced power Reactor APR1400 with a 1400MW electric power designed in Korea has 26 PARs and 10 glow-type igniters in its design specification in order to control or reduce the hydrogen concentration in the containment during the design-based or hypothetical severe accidents. For the station blackout accident most of the hydrogen and steam generated in the reactor vessel is released into the IRWST through the POSRVs of the pressurizer. In order to analyze hydrogen distribution during the SBO accident in the APR1400 containment, the

2004

GASFLOW code is used. The source of the hydrogen and steam for the GASFLOW analysis is obtained from a MAAP calculation. The discharged water, steam, and hydrogen passing through the POSRVs are released into the water of the IRWST by the spargers. Most of the discharged steam is condensed in the IRWST water because of its subcooling, and dry hydrogen is released into the free volume of the IRWST, and finally goes out to the annular compartment above the IRWST through the vent holes. From the GASFLOW analysis it is said that the gas mixture in the IRWST becomes quickly non-flammable by the oxygenstarvation but the hydrogen is accumulated in the annular compartment because of the narrow ventilation gap between the operating deck and containment wall when the igniters are not operated. The current design of the APR1400 has specified that four PARs and two igniters are installed in the IRWST. When the igniters installed in the APR1400 are turned on, a short period of burning occurred in the IRWST and then the flame was extinguished by the oxygen-starvation in the IRWST. The unburned hydrogen was released into the annular compartment and goes up to the dome because no igniters are installed around the annular compartment in the base design of the APR1400. From this result it could be concluded that the control of the hydrogen concentration is difficult for the base design. In this study design modifications are proposed in view of the hydrogen mitigation strategy. One of them is to install igniters in the annular compartment in order to burn the hydrogen released from the vent holes of the IRWST. The other one is to use the concept of water confinement in the IRWST by the compartmentalization of the IRWST. By doing this the refueling water around the spargers quickly arrives at the condition of saturation and some part of the seam discharged from the spargers escapes the water surface in the IRWST. For the first modified design standing flames are made above the vent holes of the IRWST. Most of the released hydrogen was burnt in this case, but it is thought that thermal loads from the standing flame is severe and the equipments located in the annular compartment must be protected. With the second modified design huge amount of steam is released into the IRWST and goes to the annular compartment. By the steam-rich condition of the gas mixture DDT possibility is heavily reduced.

1.

1400MWe	;	APR1400		
		26		PAR(Passive
Auto-catalytic Recombiner)	10		[1].	
	가			
(HMS, Hydrogen Mitigation Sy	stem)가			가
	가	가		
	. MELO	COR, MAAP		
lumped-parameter				
GOTHIC	lumped	1 3		,
3	GASFLOW			. [2,3,4,5]
(LOCA, Lo	ss Of Coolant Accid	ent)		

hot-leg cold-leg (LOFW: Loss Of Feed 가 (SBO: Station Black-Out) POSRV(Pilot Operated Safety Water), IRWST and Relief Valve) . IRWST 가 APR1400 (LOFW) IRWST [6] . 3 GASFLOW IRWST . (flap) , IRWST 가 가 가 IRWST IRWST 가 가 MAAP (SBO22) . 가 POSRV 37,00 가 가 IRWST 가 SBO22 dryhydrogen case LOFW IRWST SBO22 가 APR1400 가 . APR1400 IRWST 2 4 Siemens PAR . IRWST IRWST GASFLOW 가 가 가 APR1400 . 가 가 IRWST 가 IRWST IRWST 가 IRWST 가 APR1400 가 .

2.

2.1.

GASFLOW

APR1400	, 94,000m ³ 79.4m (r-φ-z)	(free volume) , R	22.86m(75ft) 19	
(oper (annular ven 61	ating deck) tilation gap) z	IRWST	1 . ф	6°

Fig. 1 Modeling of APR1400 containment for GASFLOW, (a) horizontal cut view of the containment at k=6, (b) perspective view of the modeled APR1400 containment.

			(Station B)	lack Out, SBO	22) DC		
			,	(trip)			
가 8							MAAP
		,			가	POSRW	
IRWST		(spa	rger)		(source)		
GASFLOW		. Fig. 2(a)				(mass rate)	
	37,000		가		가 I	RWST	
6,000		가					가

Fig. 2 (a) Source from MAAP calculation, (b) temperature of IRWST water calculated using mass fluxes of steam and water and their enthalpies.

2.2

APR1400	IRWST	4		가	,	IRWST	
		(flap)			IRWST		
가 I	RWST		4				
		가	fig. 3		GASF	LOW	
	45,000	5,000			. IRWS7	Г	
가		가			가		,
						IRWST	
				RWST		가	가
•			,)	F			
	•				71		
	가				IRWST		
		가 기	' IRWST			0.5psi	
				IRWS	Т	1	. Fig.
4			가		2,400		-
	. Fig	. 4(a)				IRWST	Г
	(operating deck)				1	
10	10/		•		2 400		P
10	VOI%	٦L	fic	1(h)	. 2,400	20 well	L
		~ 1 Fig. 5(a) IP	ng. WST	4(0)		20 001%	5 000
		0.18	W51				5,000
		0.10		. I	RWST		
0.5psi							
				. Fig. 5(b)	4		
					가		
4	4			IRWST		가 가	
. APR	.1400	IR	WST	4	PAR 2		가
. F	1g. 6 SBO		`		P/ ۲۲	AR	
	1 200	. PAF 7ŀ	71	1 700	~ [7F 10%	
Fig 3	1,200	000	~1	1,700		IRWST	
115.5	-	,000		. 2.	400	IRWST	Г
				가.	Fig. 6(b) PA	AR	
		. PAR				가	
1,100K	가 ,]	IRWST					
	가	가		. GASF	LOW	lumped-parame	eter
					가	가	
	GOTHIC	1.00/	41	APR	R1400		•
GASELOW	0%, 4%, 8%	, 16%					

Fig. 4 GASFLOW results at t=2400s for the SBO accident, calculated hydrogen distribution in the APR1400, (a) 10 vol% hydrogen cloud is developed around the operating deck, (b) 20 vol% hydrogen plume is shown at the left IRWST vent hole.

Fig. 5 GASFLOW results for the SBO accident, (a) pressure-time histories inside and outside IRWST, (b) volumetric fluxes at the four vent holes.

Fig. 6 GASFLOW results for the SBO accident, (a) Species concentrations at the igniter locations(I9, I10) inside the IRWST, (b) Exhaust temperature and hydrogen-oxygen concentrations at the inlet of PARs inside the IRWST.

Fig. 7 The characteristics of the mixture cloud in the IRWST compartment.

Fig. 8 The characteristics of the mixture cloud in the annular compartment and RDT room

가

Fig. 9 GASFLOW results for the SBO accident with igniters turned on, (a) pressure-time histories inside and outside IRWST, (b) volumetric fluxes at the four vent holes.

Fig. 10 GASFLOW results for the SBO accident with igniters turned on, (a) Species concentrations at the igniter locations(I9, I10) inside the IRWST, (b) Exhaust temperature and hydrogen-oxygen concentrations at the inlet of PARs inside the IRWST.

Fig. 11 The characteristics of the mixture cloud in the IRWST compartment when the igniters turned on.

Fig. 12 The characteristics of the mixture cloud in the annular compartment when the igniters are turned on.

Fig. 13 GASFLOW results at t=2400s for the SBO accident, calculated hydrogen distribution in the APR1400 with the igniters turned on.

Fig. 14 GASFLOW results at t=2400s for the SBO accident, calculated temperature distribution in the APR1400 when igniters are installed in the annular compartment above the IRWST.

Fig. 15 The characteristics of the mixture cloud in the annular compartment when igniters are installed in the annular compartment above the IRWST.

SBO

		IRWST	(partition wall)	
	120			
가				
	IRWST		. Fig. 14(b)	가
	(confined IRWST water)			45,000
	. MAAP	45,000	50,000	
	105 , 574kg	.(Fig. 16(a))	()
5,000	GASFLOW	. Fig. 17	2,400	

Fig. 16 (a) Source of SBO22 in the compartmentalized IRWST, (b) Water temperature in the confined IRWST.

Fig. 17 GASFLOW results at t=2400s for the SBO accident, calculated hydrogen distribution in the APR1400 where the IRWST is compartmentalized.

Fig. 18 GASFLOW results for the SBO accident in the APR1400 with the confined IRWST, (a) pressure-time histories inside and outside IRWST, (b) volumetric fluxes at the four vent holes.

Fig. 19 GASFLOW results for the SBO accident in the APR1400 with the confined IRWST, (a) Species concentrations at the igniter locations(I9, I10) inside the IRWST, (b) Exhaust temperature and hydrogen-oxygen concentrations at the inlet of PARs inside the IRWST.

Fig. 20 The characteristics of the mixture cloud in the annular compartment when the IRWST is compartmentalized.

Fig. 21 The characteristics of the mixture cloud in the annular compartment when the IRWST is compartmentalized.

Fig. 22 The characteristics of the mixture cloud in the annular compartment and RDT room when the IRWST is compartmentalized.

3.

Beyond DBA(Design Ba	ase Accident)		(SBO)	
3		GASFLOW			
		,		IR	WST
		MAAP			APR1400
26	PAR	10		, SBO	
		가 . 1	IRWST		
	가	GASFLOW	IRWST.	RDT	
		가	가	sigm	a. d/71 1
			. APR1400	6	
SBO					가
APR1400		GASEL	W	, ア	
11111100		011012	IRWST	•	
	IRWST				
4%					GASELOW
-170		IRWST			0/15/120 //
		, 11(0))			
		가		IRW	ST
71			IRWST	iittii	51
21	Q	n	IKW51	120	
•		о СТ		120	
	117.44	71 IDWS	г		
ΜΛΛΡ		> IKws	1		
MAAF		lumpeu		105	45,000
	거나	CASELOW	IDW	105 ST	71
	~1	UASILOW		7L 7L1	21
	TWOT				
, 1	KWSI		IDMOT	✓r	
IDIV			IRWSI	(DO	
. IRWST		A DD 1 400		SBO	
		APR1400		0	71
,			APR1400	J	ノト
•					

[1] "19.2 Severe Accident Phenomenology and Containment Performance for the KNGR," KOPEC, 2002

•

- [2] Byung-Chul Lee et al., "An Optimal Hydrogen Control Analysis for the In-Containment Refuling Storage Tank(IRWST) of the Korean Next Generation Reactor(KNGR) Containent under Severe Accidents," ICONE-9, France, 2001
 [3] Byung-Chul Lee et al., "An Evaluation of the Effectiveness of the APR1400 Hydrogen
- [3] Byung-Chul Lee et al., "An Evaluation of the Effectiveness of the APR1400 Hydrogen Mitigation System Using Sophisticated Lumped Parameter Code coupled with 3-dimensional Model," ICAPP03, 2003
- [4] Jongtae Kim et al., "Modeling of APR1400 Containment to Study Hydrogen Behavior Using GASFLOW Code," 2003 , , 2003
- [5] Jongtae Kim et al., "Analysis of Hydrogen Behavior in the APR1400 Containment with GASFLOW ," NURETH-10, Seoul, Korea, Oct. 10, 2003
- [6] Jongtae Kim, et al., "3-Dimensional Behavior of the Hydrogen and Steam from a Hypothetical Loss of Feed Water Accident in the APR1400 Containment," 2003
 - , , 2003