

As the reactor year increases, the aging effects such as the increase of the reactor inlet header reduces the operating margin. The thermal hydraulic effects of the reduction of steam generator pressure which is one of methods to compensate the decrease of the operating margin, has been evaluated. This study focuses on the thermal hydraulic behavior resulting from the steam generator pressure reduction and the safety analysis for two DBAs(MSLB, SGTR) which are sensitive to the steam generator pressure reduction.

	(SCTP)		,
1	Gentilly 2		가
가	1993 1998		150 kPa
,		1	

가

,

1 G2

.

S/G Pressure Reduction	143kPa		
Decrease of RIH temperature	1.46		
Increases of PHT flow	19 kg/s		
Decrease of Pressurizer Level	0.93m		
Decrease of PHT Quality	0.7%		

2.

그림 1 월성 1 호기 1,2 차 계통 Nodalization

Heat Transport to 2ndary Side

+1.3

Time(s)

- 4Loops

2127.7

Heat(MW)

ò

3.

10 가

가

Valve

2 Turbine Governor

(SGLC)가

.

(14, 15).

(12, 13). ,

.

3.

SG Pressure(Mpa)	4.69	4.55	0.15
SG level(m)	1.61	1.61	0.00
Temp of RIH()	267.86	265.75	-2.10
Press of RIH()	11.35	11.35	0.00
Pressurizer level(m)	12.51	11.16	- 1.35
Pressurizer press(MPa)	9.98	9.98	0.00
STHDR Enthalpy (kJ/kg)	2795.83	2797.20	1.37
Flow to T/B(kg/s)	985.43	985.90	0.47
FWCVOF	0.48	0.41	- 0.07
Channel Flow(kg/s)	1917.34	1937.67	20.33
Feed Water Rate(kg/s)	246.43	246.45	0.02
Steam Flow Rate(kg/s)	269.12	268.86	- 0.27
PHTS Quality	0.05	0.03	- 0.01
Loop Void	0.14	0.11	0.03
Fuel Sheath Temp()	325.15	323.79	2.64

2. Steam Header 100% Break at 103%FP (Before & After Pressure Reduction)

	Sequences	Before	After		Sequences	Before	After
1	LTTURB	.367s	.284s	10	SDS2LP	31.705s	32.941s
	1 7114	007-	004-			04.000-	00.4.40-
2	LIH4	.3675	.284s	11	PWRIRP1	31.8965	33.149s
3	SDS1SL	2.805s	2.733s	12	PWRTRP2	31.896s	33.149s
4	SDS2SL	3.273s	3.289s	13	PWRTRP	31.896s	33.149s
5	LTCL4A	5.086s	3.289s	14	TGOVCLS	31.896s	33.149s
6	LFWFL	10.023s	8.008s	15	LOWHP	55.182s	57.518s
7	SDS1SP	22.670s	22.298s	16	PMPTRIP1	76.147s	80.608s
8	SDS2SP	22.670s	22.298s	17	ТРНТР	196.208s	200.654s
9	SDS1LP	31.705s	32.941s				

4.

17

Channel Flow Rate

16

3500

18 1

.

