2004

AMBER
An evaluation of flux to dose conversion factors using AMBER for biosphere assessment

*. .

7\text{ (*ymlee@kaeri.re.kr)}

. 가 가 .

(mass transfer coefficient) (Flux to dose conversion factor; DCF) 7 AMBER .

Abstract

Nuclides in radioactive wastes are assumed to be transported in the geosphere by groundwater and probably discharged into the biosphere. Quantitative evaluation of doses to human beings due to nuclide transport in the biosphere and through the various pathways is the final step of safety assessment. To calculate the flux to dose conversion factors (DCFs) for 18 nuclides with their decay chains, a mathematical model for the mass transfer coefficients has been constructed considering material balance among the compartments in biosphere and then is implemented to AMBER.

1.

,

, / 가 가

가 .

가

가 ,

. 가

•

가

가 가 가 가 가 GBI (Geosphere-Biosphere Interface) FEPs (Features, Events, and Processes) 가가 가 가 가 가 가 $\left(\frac{Sv/yr}{Bq/yr}\right),\,$ (Bq/yr)(Flux-to-dose conversion factor; DCF) , GBI (Safety indicator) 가 18 31 가 가 가 AMBER [1] 2. 가 가 가 (Reference Biosphere) , 1999 IAEA BIOMASS[2~4] **BIOMASS** 가 가 가 가 BIOMOVS II 1996 FEP [5] (ICRP) (Reference Biosphere Methodology) [6~7] H12 [8]

가 ,

가 가 가

가

가

(Topography) 기 GBI

, BIOMOVS II FEP (Features,

events, and processes) 가 가

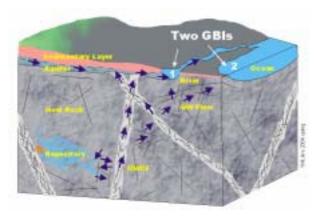
(Exposure group)

(Critical group)

가

가 (Critical exposure group)

37† ,
(Forming) , (Freehweter Fishing) , (Mexing Fishing)


(Farming), (Freshwater Fishing), (Marine Fishing)

· 가 , 가 가

•

GBI , 1

.

가

1. ()

3. FEP

가 가 가 SKB-91[10], SITE-94[11] AECL EIS[9], 가 EPRI[12] 가 가 가 가 GBI가 가, GBI가 가 2 RES (Rock Engineering System) [13] 가 (LDE; Leading diagonal dlement) GBI가 2a 가 (River water), 2 가 (Surface soil), 가 (Vadose zone), (River sediment), Sink 6 2b (Ocean) (Ocean 4 sediment) Sink (ODE; Off-diagonal elements) FEPs 가 가 **AMBER** 가 2 RES

4

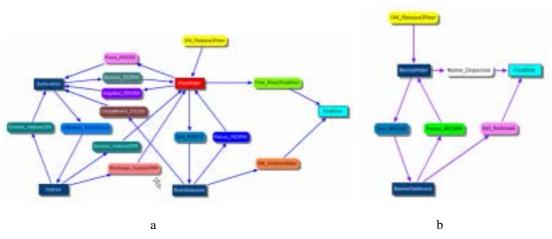
,

, (atmosphere), (plant), (animal) , フト

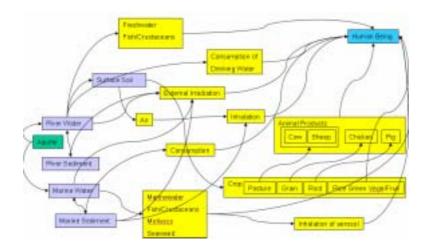
Source
Term (GW, Release
25W

Infiltration_SS Excelor_SS
2Vadose Excelor_Va
dose/2fW/
Fectige_Va
State

source			
term (GW			
release)	GW_Release2MW		
		Sed_MW2	Marine_Dis
	Marine/Water	MS	persion
		MarineSedi	Net_Sedim
	Res_MS2MW	ment	ent
			FinalSink


a b

2. 가 RES (GBI: a. b.)


, , , 4

, , 가

가

3. 7[†] (GBI: a. ; b.)

4. (Exposure Pathway)

4.

가

(Mass transfer coefficient)

가 **AMBER** H12 **AMBER**

BIOMOVS

Π 가

[mol] (N_i)

$$, \quad \frac{dN_i}{dt} = \left[\sum_{j \neq i} f_{ji} N_j + \lambda_M M_i + S_i(t)\right] - \left[\sum_{j \neq i} f_{iji} N_i + \lambda_N N_i\right] \qquad , \qquad , \quad N_i = i$$

$$N \hspace{1cm} [\mathrm{mol}], \hspace{1cm} N_j = \hspace{1cm} j \hspace{1cm} N \hspace{1cm} [\mathrm{mol}], \hspace{1cm} M_j = \hspace{1cm} j$$

$$M$$
 (N) [mol], $S_i(t) = i$ N

[mol/y],
$$\lambda_M$$
, $\lambda_N = M N$ [y-1], $f_{ji}, f_{ij} = j$

(transfer coefficient) [y⁻¹] .

(ingestion),

(inhalation) (internal exposure) (external exposure)

가

6

H12

. [8]

5. 가

가 18

U-234, Th-230, Ra-226, U-235, Pu-231, Ac-227, U-236, Th-232, Ra-228, Np-237, Pa-233, U-233, Th-

229 13

Pu-238 -> U-234 -> Th-230 -> Ra-226 -> NULL;

Pu-239 -> U-235 -> Pu-231 -> Ac-227 -> NULL;

Pu-240 -> U-236 -> Th-232 -> Ra-228 -> NULL;

Pu-241 -> Am-241 -> Np-237 -> Pa-233 -> U-233 -> Th-229 -> NULL;

Am-241 -> Np-237 -> Pa-233 -> U-233 -> Th-229 -> NULL;

Cm-242 -> Pu-238 -> U-234 -> Th-230 -Ra-226 -> NULL;

 $Cm-244 \rightarrow Pu-240 \rightarrow U-236 \rightarrow Th-232 \rightarrow Ra-228 \rightarrow NULL.$

1. Nuclide-Specific Input data

Parent	Daughter		Bq/y	Chain		
Cm-244	Pu-240	0.0383	1			
Pu-240	U-236	0.000106	1			
U-236	Th-232	2,96E-08		48		
Th-232	Ra-228	4,95E-11		44		
Par-228	Th-228	0,121				
Th-228	NULL	0,363				
Pu-241	An-241	0.0491	1			
Am-241	No-237	0.0016	1			
Np-23T	Pa-233	3.24E-07		45(+1)		
Pa-233	0-233	9.38		46,411		
U-233	Th-229	4.36E-06				
Th-229	NULL	9.44E-05				
Cm-242	Pu-238	0.000147	1			
Pu-238	U-234	8,77E+01	1			
U-234	Th-230	2,83E-06		4442		
Th-230	Ra-226	9,00E-06				
Par-225	NULL	0,000433				
Pu-239	U-236	2,880,00	1			
U-236	Pa-231	9,85E-10		dN+3		
Pa-231	Ac-227			44-0		
Ac-227	NULL	0.0318				
H-3	NULL	12.33	1			
C-14	NULL	0.000121	1			
NI-59	NULL	9.19E-06	1			
Co-80	NULL	0.132	1			
M-63	NULL	0.00722	1			
Sr-90	NULL	0.0238	1	FP/AP		
Nb-94	NULL	2,00E+04	1			
Tc-99	NULL	3,25E-06	1			
I-129	NULL	4,416-08	1			
Cs-138	NULL	3,01E-07	1			
Cs-137	NULL	0.0231	1			

가 가

가

가

2 2002 가

1 1 . [14]

2. Consumption Rate (

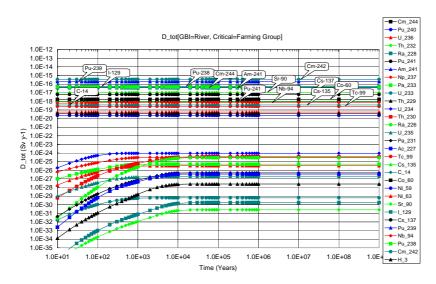
foodstuff		units	best estimate	min	max
agricultural	rice	kg-fw/y	81,9	5	150
products	grain	kg-fw/y	29.6	- 5	150
	root veges	kg-fw/y	8,9	5	400
	green veges	kg-fw/y	98,3	25	200
	fruits	kg-fw/y	62.7		100
animal	beef	kg-fw/y	9.7	4	100
products	muton	kg-fw/y	0,6	4	100
	pork	kg-fw/y	13.3	- 4	100
	chicken	kg-fw/y	4	1	100
	cow liver	kg-fw/y	6.7	0	40
	chicken river	kg-fw/y	0	0	40
	chicken eggs	kg-fw/y	6.7	10	200
	cow's milk	kg-fw/y	32,9	20	400
freshwater	freshwater fish	kg-fw/y	1	n/a	n/a
products	freshwater crustaceans	kg-fw/y	0.1	n/a	n/a
marine products	marine fish	kg-fw/y	12,4	n/a	n/a
	marine crustaceans	kg-fw/y	3,9	n/a	n/a
	marine molluscs	kg-fw/y	1.5	n/a	n/a
	marine plants	kg-fw/y	2.2	n/a	n/a
others	water	m3/y	0,61	0,4	0,75
	soil	kg-fw/y	0,037	0,001	0.1

)

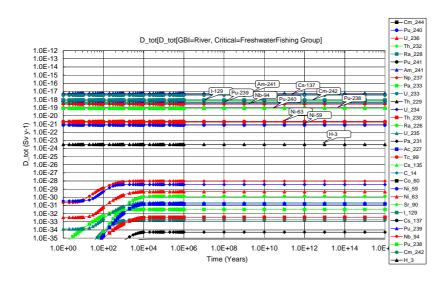
3. Best Estimate for Transfer Processes Operating between Biosphere Compartments

	transfer	AMBER.		Sest		
	process	perameter	unche	ertimater	min	70 00
	imigriton.	$Q_{\perp}irr$	$m^2/\gamma e$	4.402+03		-
	infiltration/rec	d_d				
	hege	_	m/yr	7.00E-01	4,503-04	1.00E+03
Liquid	flooding	8 JW	a^2/ye	1.00E+03	1.00E+01	1.00E+03
Department	since flow	6-m	all/ye	6.31+09	3.002+05	3.005+10
	merine	8-m				
	derdange		m ² /yr.	4.005+11	4.005+09	2.00E+11
	esosion	E_20d	es/yx	1.002-04	6.402.06	3.402.03
	dredging/men	v_dm				
	ndering		m //r	1.605+00	5.00E-01	5.00E+00
	niver sediment	r_sed				
	rupenint.		m/yr	1.002-64	6.4III-06	3.400-03
	sives gross	e_g				
	sedimentation	(river)	m/yr	1,605-03	1.603-06	1.605-04
	bed-load	B_1	Крут	1.600+03	1.000+03	2.202+05
	diffusion due	B_mana				
Solid	10					
transfers	biotrafiation					
E-MINCHIP	in a local					
	merice					
	estricument.		m ² /ye	3.208.45	3.202.06	3.205.04
	8116	6-8				
	ardimentation					
	in a local					
	merice					
	estricusment.	(Marion)	m/yr	7.502.05	3 837-06	3.708.04
	Net	6_N				
	redimentation		m/yr.	5.008-05	7,503-06	3,705-83

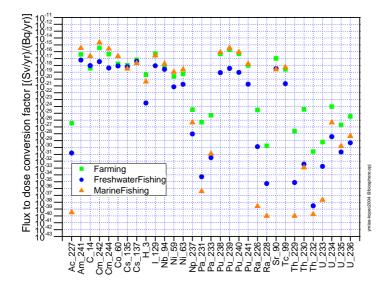
3 H12 $7 \ \ \, [15] \ \ \, .$ $10^4 \ m^2 \quad , \qquad 10^6 \ m^2$

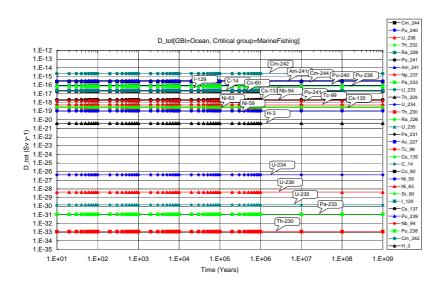

 $2\times10^6 \text{ m}^2$.

5~8 4


5 6 GBI가 1Bq/yr가

y 1Bq/yr


Sv/yr


5. Response of the biosphere assessment model to steady, unit flux input (1 Bq/yr) @ River GBI (Farming exposure group)

6. Response of the biosphere assessment model to steady, unit flux input (1 Bq/yr) @ River GBI (Freshwater Fishing exposure group)

7. Flux to dose conversion factor for each nuclide for each exposure group

8. Response of the biosphere assessment model to steady, unit flux input (1 Bq/yr) @ Ocean GBI (Marinewater Fishing exposure group)

, 7 C-14

.

, 8 Cm-242 가

가

Ac-227, Pa-231, Ra-226, Ra-228, Th-229, Th-232, Th-234

GBI가 가

GBI가

. GBI가 GBI가

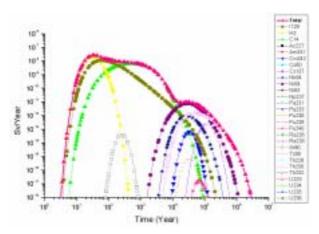
Am-241, C-14, Nb-94, Ni-59, Ni-63, Sr-90 Tc-99 , Cm Pu

, I-129, Cs-137, Cs-135 H-3

4. Flux to dose conversion factors

GBI		Ocean	
Exposure	Farming	FreshwaterFishing	MarineFishing
Ac_227	3,61E-27	1,52E-31	3,17E-40
Am_241	3,97E-17	5,81E-18	3,34E-16
C_14	3,79E-19	9.05E-19	2,19E-17
Cm_242	3,52E-16	3.43E-18	2.17E-15
Cm_244	4,23E-17	4,12E-19	2,61E-16
Co_60	1.71E-18	8.24E-19	2.13E-17
Cs_135	9,92E-19	6,05E-19	3,20E-19
Cs_137	6,43E-18	4,01E-18	2.13E-18
H_3	4,06E-20	3,14E-24	3,99E-21
L129	5,23E-17	8,68E-19	2,62E-17
Nb_94	7,38E-19	2,64E-19	1,65E-18
NL59	2,39E-20		1,08E-19
NI_63	5,64E-20	1,74E-21	2,57E-19
Np_237	3,16E-25	9,54E-29	4,35E-27
Pa_231	4,95E-27	5,31E-35	4,01E-37
Pa_233	5,07E-26	3,25E-32	1,20E-31
Pu_238	4,60E-17		7,80E-17
Pu_239	1,96E-16	3,62E-19	3,32E-16
Pu_240	5.05E-17	9.25E-20	8,48E-17
Pu_241	9,58E-19	1,78E-21	1,63E-18
Ra_226	2,90E-25	1,34E-30	2.68E-39
Ra_228	1,78E-30	5,42E-36	1.00E-40
Sr_90	1.01E-17	3,36E-19	2.55E-19
Tc_99	2,68E-19	2.07E-21	5,10E-19
Th_229	2,53E-28	7,52E-36	1,00E-40
Th_230	3,60E-25	3,60E-33	1,18E-33
Th_232	2,60E-31	2,99E-39	1,75E-40
U_233	6,31E-30	1,70E-33	2,13E-38
U_234	9,35E-25	3,72E-29	4,39E-27
U_235	2,01E-27	2,11E-31	1,48E-30
U_236	3,48E-26	4,87E-30	4,40E-29

9 가


DCF

가

. C-14 I-129

가

Nb-94, Ni-59 Tc-99

9. Annual dose to Farming exposure group in case of river GBI

I-129

5

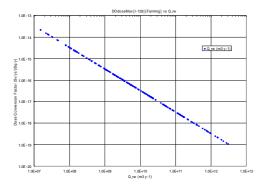
(River flow, Q_rw), (Irrigation, Q_irr),

sedimentation, s g)

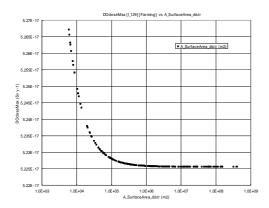
가

10 .

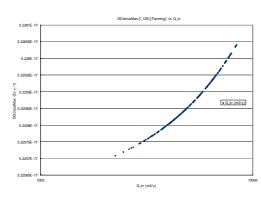
. $10 \sim 13$ $Q_- rw$ 3

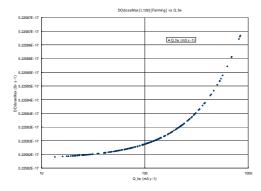

.

, 가


I-129가

I-129 가 , Q_irr 가


가 가 $Q_- rw$


10. Sensitivity of Q_rw to DCF for 129 I (LogTri (6.8, 9.8, 12.8) #=200)

11. Sensitivity of area (surface soil) to DCF for ¹²⁹I (LogTri (3, 6, 9) #=200)

12. Sensitivity of Q_irr to DCF for ¹²⁹I (Tri (2200, 4400, 8800) #=200)

13. Sensitivity of Q_fw to DCF for 129 I (LogTri (1, 2, 3) #=200)

6.

, ,

가 GBI FEPs

.

, (Flux-to-dose conversion

factor)7\rangle . , GBI

(Safety

indicator) .

3가 , ,

, (inhalation), (ingestion), (external

irradiation) ,

GBI 가 18

31 가 3

. 가 AMBER .

가 [16, 17]

가

(Template)

- 1. AMBER 4.4 Reference Guide, Enviros Quantisci, Henley-on-Thames, U.K., 2002.
- BIOMASS, Alternative Assessment Contexts: Implications for Development of Reference Biospheres and Biosphere Modelling, BIOMASS Theme 1 Working Document: BIOMASS/T1/WD02, International Atomic Energy Agency, Vienna, 1999.
- 3. BIOMASS, Long-term Releases from Solid Waste Disposal Facilities: The Reference Biosphere Concept, BIOMASS Theme 1 Working Document: BIOMASS/T1/WD01, International Atomic Energy Agency, Vienna, 1999.
- 4. BIOMASS, Biosphere System Identification and Justification, BIOMASS Theme 1 Working

- Document: BIOMASS/T1/WD06, IAEA, Vienna, 1999.
- 5. BIOMOVS II, Biosphere Modelling for Dose Assessments of Radioactive Waste Repositories, BIOMOVS II TR No.12, Sweden.
- Recommendations of the International Commission on Radiological Protection (adopted January 17, 1977), ICRP Publication 26, Pergamon Press, Oxford, 1977.
- 7. Radiation Protection Principles for the Disposal of Solid Radioactive Waste,2-5 Annals of the ICRP, 15, No.4, ICRP Publication 46, Pergamon Press, Oxford, 1985.
- 8. H12, Project to Establish Technical Basis for HLW Disposal in Japan, JNC, 1999.
- 9. Davis, P.A. et al., The Biosphere Model, BIOTRAC, for Postclosure Assessment, AECL-10720, COG-93-10, 1993.
- SKB 91- Final Disposal of Spent Nuclear Fuel; Importance of the Bedrock for Safety, SKB TR 92-20, 1992.
- 11. SKI SITE-94 Deep Repository Performance Assessment Project, SKI Report 96:36, Swedish Nuclear Power Inspectorate, Stockholm, 1996.
- 12. Smith, G.M. et al., Biosphere Modeling and Dose Assessment for Yucca Mountain, EPRI Report TR-107190 3294-18, 1996.
- 13. Hudson, J., Rock Engineering Systems: Theory and Practice, Ellis Horwood, Chichester, 1992.
 14. 2002 , , 2002. 12.
- 15. Ulla Bergström et al., Models for dose assessments-Modules for various biosphere types, TR-99-14, 1999.
- 16. , 7[†] , , , , , 2003. 11.
- 17. , 2004. 가,