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Abstract 

Analytical study of water droplet deformation when the droplet impinged onto wetted and 
non-wetted solid surface is calculated. This analytical work is performed by the Moving 
Particle Semi-implicit(MPS) method which solves the unsteady Navier-Stokes equations for 
the liquid droplets. Accurate analysis of the liquid droplet interacting with a solid surface will 
provide an essential input to understand the dynamic process of droplet impingement which 
encounters in spray cooling process in many industrial processes. One of important 
application is also in the analysis of reflooding process of LOCA in nuclear reactor. The 
present work is, however, limited to an adiabatic process, i.e., no heat transfer between the 
liquid droplet and solid surface. However, hydrodynamic aspects of the liquid droplet 
deformation during the impingement are still essential to investigate the subsequent heat 
transfer during the process. 

1. Introduction 

Quenching of a heated surface commonly encounters in many physical processes which 
involves the interaction between a coolant and a heated medium, such as boiling systems, 
cryogenic systems, metallurgical processing, and steam generators. This  phenomenon is also 
an essential issue in the assurance and reduction of safety margins in many boiling systems 



which include nuclear reactors. 
 
In nuclear reactor, the design of the nuclear reactor is based on a hypothetical accident 

scenario, so-called LOCA(Loss-Of-Coolant Accidents), in which the nuclear core with 
continuous residual heat generation due to the decay heat of nuclear fuel even after the 
reactor shutdown can be overheated by the loss of coolant. For safe design of the reactors, the 
continuous overheating of fuel rods without adequate cooling which may eventually cause 
catastrophic core melting should be prevented. The adequate cooling during LOCAs is 
provided by the Emergency Core Cooling System(ECCS). The cold water to cool the 
overheated core is introduced into the Reactor Pressurized Vessel(RPV) during the reflooding 
phase of the accidents. During this phase the reflooding of coolant into the overheated core, 
however, violent boiling processes occur. Therefore, the adequate evaluation of the safety 
margin in relation to the peak temperature of the overheated fuel rods, or peak cladding 
temperature(PCT) during the hypothetical LOCA is largely connected to an accurate 
prediction of the cooling of the cladding during the reflooding phase. 

 
In fact, reflooding process involves a variety of basic flow phenomena(bottom and top 

quench, droplet formation, droplet break-up, droplet de-entrainment, grid effects, etc.) which 
also affect the cooling process at various scales. Reflooding is characterized by a multiplicity 
of scales and basic phenomena, including: 

 
- System scale(coupling between core and loops) 

 Oscillatory flow, steam binding, core inlet flow, radial mixing, pool formation, etc. 
- Macro scale(homogeneous portions of the core, subassembly) 

 Entrainment, quench front propagation, etc. 
- Meso scale(subchannel scale) 

 Heat transfer modes, droplet formation, evolution and distribution, etc. 
- Micro scale(droplet scale or film scale) 

 Details of liquid-wall interaction and rewetting 
 

The predictive capabilities of current analysis tools are reasonable for a broad range of 
conditions but are far from being universal. In fact, they often fail to simulate tests with 
geometries(e.g., tight lattice) and conditions(high initial temperatures as a consequence of 
limited emergency core cooling availability), substantially different from those included in 
the database used during the development of their models. Simulation tools are essentially 
one-dimension and extensions of the models to three-dimension in a porous body approach 
are available in some system codes, e.g., TRAC, which can only account for large-scale 
three-dimensional effects. 

 
Computational Fluid Dynamics(CFD) codes have not been used yet for the analysis of this 

phenomenology, but they have potential with respect to two different areas of application. 
Firstly, they can provide a more accurate calculation of distribution effects without resort to 
empirical approaches. Secondly, recent successes in calculating steady-state void fraction 
distributions in complex geometries(including multi-field formulations of interactions of 
annular-dispersed flows with obstacles) should encourage their use in analyzing a number of 



processes at the appropriate scale, especially for developing more accurate closure laws for 
more global approaches. At present, however, due to computer power limitations and basic 
difficulties(practical as well as theoretical) to include all the small-scale processes in a full-
scale transient simulation, the use of CFD for global reflooding modeling cannot be 
envisaged. 

 
Recent advances of the CFD techniques in the interface tracking between two phases, such 

as, liquid and vapor enable directly to simulate various multiphase flow and heat transfer 
phenomena. This numerical investigation allows investigating the detail multiphase 
phenomena such as liquid droplet entrainment and detrainment during the reflooding phases. 
There are a number of techniques, such as the Level set method, the Volume of Fluid(VOF) 
method, the CIP(Cubic interpolated Propagation) method, Lattice Boltzmann method, 
Moving Particle Semi-implcit(MPS) method, etc. 

 
During the reflooding phase of the LOCA accident, accurate prediction of the droplet 

entrainment and detrainment in the reflooding coolant and the post-dryout heat transfer in the 
downstream of the reflooding coolant is of essence to evaluate the peak cladding temperature 
of the fuel. First, in the post-dryout region, the main heat transfer mode will be the quenching 
process due to the small-scale liquid droplets in the mist flow on the heated fuel rod surface. 
To understand this type of quenching process, the interaction between the solid surface and 
liquid droplet will be of importance. When the misty liquid droplet impinges on the heated 
surface, the deformation of the liquid droplet will provide impinges on the heated surface, the 
deformation of the liquid droplet will provide the interfacial area to transfer energy from the 
surface to the droplet. 

 
Second, the distribution of liquid in the mist flow during the reflooding of coolant is 

determined by a mass balance between the liquid droplet generation from the reflooding 
coolant and the liquid droplet detrainment to the reflooding coolant when quenching front 
progresses. Therefore the investigation of the microscopic droplet entrainment and 
detrainment phenomenon with a single liquid droplet will be of essential. 

 
In this work, the micro-scale phenomena during the reflooding of coolant, such as droplet 

impingement on the non-wetted solid surface and wetted solid surface which cover the 
phenomena mentioned in the previous paragraphs such as quenching of the heated fuel rod by 
a liquid droplet and liquid droplet detrainment, will be investigated. 

 
The present work is limited to investigate the adiabatic case or hydrodynamic aspect of the 

phenomena. However, hydrodynamic aspects of the liquid drop deformation during the 
impingement are still essential to investigate the subsequent heat transfer during the process. 
The work will also continue to investigate the quenching phenomena by the improvement of 
out CFD codes with consideration of an adequate energy equation. 

 
In addition, this analysis will give invaluable information in many other applications, such 

as spray cooling, fuel injection in the engine combustion, condenser and boilers, as well as 
the micro-ink jet and micro-system cooling devices, etc. 



2. Analytical Method 

2.1 General Navier-Stokes Equations 
 

Governing equations are the mass and momentum conservation equations: 
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u u n . (2)

where D/Dt denotes the Lagrangian derivative involving advection terms, u is the fluid 
velocity, P is the fluid pressure, ρ and µ are the density and viscosity, respectively, σ is the 
interfacial tension coefficient, κ is the mean curvature of interface, δ(s) is Dirac delta function 
concentrated on the interface, ns is the unit normal vector to the interface. 

 
2.2 Moving Particle Semi-Implicit Method 

 
2.2.1 Particle Interaction Models 

 
In the MPS method, particle interaction models are prepared for the differential operators. 

All the interactions are limited to neighboring particles covered with a weight function: 
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Where re is the radius of the interaction area, re =2.1l0 in this study, l0 represents the distance 
between adjacent particles in the initial arrangement and r is the distance between two 
particles. The weight function is zero when r is longer than re. 

 
Summation of the weight function is called particle number density, which is used as a 

normalization for averaging. 
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The particle number density is proportional to the fluid density. It should be constant for 
incompressible flows: ni=n0, where n0 is dependent on the initial arrangement of particles. 

 
Gradient and Laplacian operators involved in the governing equations are transformed to 

equivalent particle interactions. If φ is an arbitrary scalar, particle interaction models for 
differential operators are expressed as 
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Where d is the number of space dimensions and λi is defined as 
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The gradient model is obtained as the average of gradient vectors, which are determined 
between particle i and its neighboring particles j. The Laplacian model is derived from the 
physical concept of diffusion. The parameter λi is introduced to make the variance increase 
equal to that of the analytical solution. 

 
Substituting the above particle interaction models into the governing equations, we can 

obtain the particle dynamics to simulate fluid flows. More details are described in Koshizuka 
and Oka(1996). 

 
2.2.2 Computational Algorithm 

 
A semi-implicit algorithm is used for incompressible flows in the MPS method. For 

incompressible flows, the continuity equation requires the fluid density to be constant. This is 
equivalent to the particle number density ni being constant. In each time step, the governing 
equations are calculated through two steps. 

 
In the first step, all terms in the momentum conservation equation except the pressure 

gradient term are explicitly calculated and temporal velocities and positions of particles are 
obtained: 
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Where µ is the kinematic viscosity. At this moment, the incompressibility constraint may not 
be satisfied, that is to say, the temporal particle number density n* is not n0. The temporal 
value n* is implicitly corrected to n0 by 

0n n n∗′ = − , (10)
Where n' is the correction value. This is related to the velocity correction u' through the mass 
conservation equation: 
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The velocity correction is derived from the implicit pressure gradient term as 
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ρ
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With Eqs. (10)-(12), a Poisson equation for pressure is obtained: 
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In the second step, the above Poisson equation for pressure is solved. Substituting the 



present Laplacian model to the left side of Eq. (13), we obtain a set of symmetric linear 
equations, which can be solved by the incomplete Cholesky decomposition conjugate 
gradient(ICCG) method. The pressure gradient term is then calculated and the velocities and 
the positions of particles are modified. 

 
2.2.3 Surface tension model 

The particles that satisfy the following condition are regarded as on the interface: 
0

in nβ< . (14)
where, β is a parameter and 0.97 is employed in this study. The calculation result is not 
sensitive to the value of β as reported in Ref. ?. 

 
The surface tension model(Nomura et al., 2001) is shown in Fig. 1. The curvature κ and the 

unit normal vectors n of the interfacial particles are calculated based on particle number 
density. Surface tension is calculated for the particle that are regarded as on the interface. 
Another particle number density 1st

in is calculated at these particles as 
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Where st
er is 3.1l0 in this study. The quantity l0 represents the distance between adjacent 

particles in the initial particle arrangement. The coefficient 3.1 has not been optimized yet. 
Accuracy and the computation time should be considered for the optimization. 

 
The particles regarded as on the interface are found in a thickness of dst. In dst, an inside 

particle has a large 1st
in  than that of an outside particle. This lead to errors for the calculation 

of curvature. The outside particles are identified by smaller particle number densities. Thus, a 
revised particle number density 2st

in in which the outside particles are excluded is calculated 
by 
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The curvature of the interface is then calculated as 
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where 1
0
stn  is constant. This value is calculated where the curvature is zero; the interface is 

plane. 



 
In this model, curvature of the interface is calculated without drawing the interface. 

Therefore, a specific algorithm for large deformation  of interfaces is not necessary. The unit 
normal vector is also calculated through particle number density, where the weight function is 
taken as Eq. (16). The particle number densities at four positions around the particle i are 
evaluated, ( )0

x
i i xn l± ±r n  and ( )0

y
i i yn l± ±r n . The unit normal vector to the interface is 

calculated by 
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Where the vectors nx and ny are the unit vectors in the x- and y-direction, respectively. 
 

3. Numerical Analysis of Liquid Droplet Deformation  

3.1 Situations 
 
The target situation for the proposed work focuses on the analysis of droplet deformation 

during the droplet impingement on non-wetted and wetted solid surface. The cases of the 
target analysis are as follows(Fig. 2), 

 
- Case I. Droplet deformation on the non-wetted solid surface 
- Case II. Droplet deformation on the wetted solid surface (shallow water on the solid      

  surface) 
- Case III. Droplet deformation on the wetted solid surface (deep water on the solid  

  surface) 
 
The diameter of each droplet is 18 cm. In case II the depth of water pool is 4cm and 8 cm in 
case III. In case I the initial height of water drop is 14.8 cm and in case II and III initial drop 
is 10.8 cm above the water initially. Surface tension is 2.361×10-2 N/m. 
 
3.2 Results and Discussions 

 
In the calculation water and wall are represented by many particles which are located like a 

square grid initially. The distance between two neighboring particles l0 is 8.0×10-3 m. The 
particles on the inner first line of the walls are involved in the pressure calculation. As the 
source term of the incompressibility model, the particle number densities are needed at these 
particles. Thus, two other lines of particles should be added outside because ren=2.1 l0, 
otherwise the particle number densities are small and the wall particles are recognized as the 
free surface. In MPS, the wall boundary is represented by arranging fixed particles.  

 
As shown in Fig. 3, water droplet impinges over flat surface and spreads. “With Extreme 



viscosity” means that its kinematic viscosity is set to extremely high for the test of viscosity 
term’s robustness. In case of high viscosity spreading speed of droplet is slower than that of 
“With normal viscosity”. Case II and III are shown in Fig. 4 concurrently. In both cases 
behavior of water is reasonable.  

4. Conclusions 

Analytical study of water droplet deformation when the droplet impinged onto wetted and 
non-wetted solid surface is calculated. This analytical work is performed by the Moving 
Particle Semi-implicit(MPS) method which solves the unsteady Navier-Stokes equations for 
the liquid droplets. As a result, falling of water droplet on flat surface and shallow/deep water 
pool was simulated. The present work is, however, limited to an adiabatic process, i.e., no 
heat transfer between the liquid droplet and solid surface. However, hydrodynamic aspects of 
the liquid droplet deformation during the impingement are still essential to investigate the 
subsequent heat transfer during the process. 
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Fig. 2. Target Situations for CFD Analysis 
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Fig. 3. Droplet deformation on the non-wetted solid surface 
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Fig. 4. Droplet deformation on the wetted solid surface 
(shallow  and deep water on the solid surface) 
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