1400

Study on the Design Verification of Flow-induced Vibration Analysis in APR1400 S/G

(:FIV)

2004

North Anna Mihama 2 1 . . 4 가 가 Stay . Cylinder Central Cavity U 1400 . 가 , Stay Cylinder 가 가 . , 가 #3,4 , , 가 . 2. 2.1 APR1400

가 . .

. , 가 (Central Cavity) , 가

2.1.1 ア 1400 KSNP ア .(2.1) 2.1.2 EFDP(Egg-crate Flow Distribution Plate) ア Egg-crate Flow

Distribution Plate (2.2) .

.

2.1.3 UBS(Upper Bundle Support)

VERTICAL

UBS(UPPER BU	NDLE SUPPORT)	VERTIC	CAL GRID	HORIZONTAL (GRID 가
.(2.3)				
2.2					
		00		,	,
U-bend		90	/% >r [1]		
e sona					
2	가				
				,	, 2
2		,			
ATHOS3	2	contr	ol cell		
3	Contro		control		283 Mod 1
			oontror		
ATHOS3 Mod	d.1				
		(gap	velocity)		
2.4					
		_1	ATHOS	- TAP	, ANSYS
	MODES	가	PIPO-FE		
	MODES	•			
2.3					
ATHOS3 Mod.1					
APR1400		가	,	2	가
100%					
1400	0.5	,			Table 1 ,
	2.5		2.5	(EFDP)	
			0	- Dena 7	ŀ.
		가			
,	2 ft/se	ec			가
	가	Egg-crate			athosgpp.for
athos3.for	athosgpp3p1.	for athos3p	o1.for	,	

					,			ATHOS	8 Mod.1
	ATH	DS3							
	(2.6).	,					가
Egg-crate	1								
가							E	gg-crate	
						(2.7).	
1400				13,102					

							가			2	.1	Tub	e ro	w 49
	e	gg-crate					tu	be	tube	e row	91,	133		2
3	е	egg-crate					tu	be		, tub	e ro	w 175		
tube	가		tube					Row			U	J-bend		
	spa	in 가		(Row	49,	91,	133, 1	75)						
(Out of	plane)		가		(hc	orizo	ontal st	trip)						
(diagon	al strip)					가			Row	24				
Line		(c	lynamic	pressu	ıre)							,	ow	24
29		가				tuk	be line	가		2				
		140	0					가			Tab	ble2		

	RESULT	
Max. Quality (%)		47.7
Max. Void Fracti	95.0	
Max. Axial	ft/sec	23.8
Velocity	m/sec	7.25
Circulation Ratio	3.86	

Table	2	Tube	list	for	FIV	analy	vsis
I UDIC	~	I UDC	1101	101		unui	, 010

Row No.	Line No.					
24	129	205				
49	112	202				
91	192	-				
133	170					
175	106					

2.5

2.4

$$m_n(x)$$

$$m_e(x)$$
7. $m_a(x)$,
 $m_t(x)$ (1)

(1) 1

가

[2].

$$m_{\sigma}(x) = m_{a}(x) + m_{p}(x) + m_{t}(x)$$
 (1)
 $m_{a}(x)$ 2

3

가

	$ ho_{s}(x)$	(2)					
$m_a(x) = C_m \cdot$	$\frac{\pi}{4} d_o^2 \rho_s (x)$	(0)						
d_{c}	1	(2) C _r	71					
Ŭ			~1	2	•			
			, 2				가	가
가 ,								
	가			[0]		(lt: anan)	
APR1400				[3].		(mu	iti-span)	
		가		가		,		
2.6								
261								
2.0.1			egg-cra	te	,	(Diag	qonal strip	s),
(vertical strips))	(h	orizonta	l strips)			2.8	Egg-
crate	, U-tube							
(Di	agonal strip	os)	(ve	ertical st	rips)			
(horizontal	strips)					eag-crate		12
tube sheet	3 egg-	-crate		4	full	egg-crate		12 ,
	가		,		4	egg-crate		
		•						
262								
2.0.2								
	,							가
가							가	
					1 4 0 0		가	71
30	フトフ	ŀ			1400			21
	-	-						
2.6.3								
				ANS	SYS			,
	PIPE18		PIF	PE18			2.9	71 71
						. a	RIVIS	∠r ∠r

. 2.10

2.7

$$\begin{split} V_{\sigma} &= K f_{n} d \sqrt{\frac{2 \pi \xi m_{o}}{\rho_{0} d^{2}}} (3) \\ d & , \ m_{o} & \rho_{o} & 2 & f_{n} \\ n & . \xi & Has linger \\ & . & 7 \cdot 30 \ Hz & 1.7\% & , & 7 \cdot 7 \cdot 0.5\% \\ & . & K & ABB - CE & 2.11 \\ 60^{0} & 3.3, 30^{0} & 4.9, 45^{0} & 7.1 \\ & 1400 & U - & 45^{0} & . \\ & & 7 \cdot 7 \cdot 7 \cdot , \\ & 7 \cdot 7 \cdot 7 \cdot . & (span) \\ & 7 \cdot & 7 \cdot & . \\ & & 7 \cdot & 7 \cdot & . \\ & & & 7 \cdot & . \\ & & & & & 7 \cdot & . \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & &$$

$$V_{e}^{2} = \frac{v - \rho_{o}}{\int \frac{m(x)}{m} \phi(x)^{2} dx}$$
(4)
x , m(x) , p(x)
2 . $\phi(x) = 3.3$. $v(x) = 2$
. U-bend

ATHOS3	3
--------	---

.

•

control cell	, U-bend	가		
	5	. APR1400		
가		2.12 .		
(stability ratio)	$SR = V_e/V_{\sigma}$, 1		

	가	가	가
[0]			

가 [2].

2.7.2

.

ASME Sec. Appendix N

,

3									4					•		
		()								()						
	-															
													(mils)			.(mils)
	129	1	22.61	0.54	1	22.41	0.60		24	129	1	22.61	1.40	1	22.41	2.01
24	205 1 22.48 0.68 1 21.90 0.69			205	1	22.48	1.81	1	21.90	2.26						
	112	3	37.53	0.13	3	36.56	0.13	.13 40	10	112	1	33.34	0.29	1	32.65	0.29
49	202	9	98.50	0.18	9	90.10	0.17		+3	202	3	37.69	0.25	3	37.07	0.27
91	192	9	109.10	0.18	13	106.28	0.14	ç	91	192	3	39.22	0.38	3	40.21	0.31
133	170	1	33.47	0.17	1	32.43	0.17	1	33	170	1	33.47	0.25	1	32.43	0.30
175	106	1	33.46	0.16	1	33.87	0.16	1	75	106	1	33.46	0.22	1	33.87	0.26

.

Table 5 Results summary of Fluid-Induced Vibration analysis

가

Tube		FIV results				
Row	Line	Mode No.	Natural	Stability	RMS disp.	
			frequency	ratio	(mils)	
24	205	1	21.90	0.69/0.68*	2.26/1.81*	

2.9

가

가

	가 .	가	Row 24/Line 205		0.69
RMS	2.26 mils	가	가		
,	#3,4				
				가	

- (1) Heilker, W. J., Vincent, R. Q., 1981, "Vibration in Nuclear Heat Exchangers Due to Liquid and Two-Phase Flow", Engineering for Power, Vol. 103, No. 2.
- (2) , 2002, CE
- 12 , , 1993, " (3) ,

4 , pp.261-271.

- 17, 4 , pp. 873-889.
- (4) Connors, H.J., 1980, "Fluid-elastic Vibration of Tube Arrays Excited by Nonuniform Cross Flow."Flow-induced Vibration of Power Plant Components, ASME PVP-41, pp. 93

U

- (5) Singhal, A. K., et al., 1990, ATHOS3 Mod-01 : A Computer Program for Thermal-Hydraulic Analysis of Steam Generators, Vol. 1 : Mathematical and Physical Models and Methods of Solution, Vol.2 : Programmer's Manual ; Vol. 3 : User's Manual, EPRI Report NP-4604-CCML.
- (6) Sandifer. J.B., 1992, Guidelines for Flow Induced Vibration Prevention in Heat Exchangers, Welding Research Council Bulletin No. 372

",

2.1 Tube supports & tubes arrangement

2.2 Tube supports & EFDP

2.3 Upper tube bundle supports before and after design improvement

2.4 Procedure of the fluid-induced vibration

2.5 Plot of axial mixture velocity for APR1400 steam generator

2.6 Egg-crate

2.7 Egg-crate

2.8 Boundary condition description

2.9 Mode shape for selected tubes

2.10 Modal analysis results for selected tubes

2.11 The fluid-elastic instability constants K for various tube array

2.12 Gap velocity distribution along the tubes

2.13 Stability ratio for selected tubes

2.14 RMS displacement for selected tubes