Critical discussion on the universal 2.5 power scale for the onset criteria of the liquid entrianmnet and vapor pul-through through branches in a Horizontal pipe with staratified flow



## Abstract

Critical discussion is made on the universal 2.5 power scale for the onset criteria of the liquid entrainment and vapor pul-through through branches in a Horizontal pipe with staratified flow. Liquid entrainment and vapor pull-through can be observed for the stratified flow in the horizontal pipe due to the fact that a continuous phase entrains the other phase. The determination of the onset of entrainment is important for the nuclear safety analysis. The previous works on the onset of entrainment propose the different results based on their own experimental data, but 2.5 power scale for the model is a dominant theory until now. In the present study, the careful evaluation on the model that is universally applied to the onset of entrainment without considering the entrained phsase and the effect on the diameter of branch pipe was performed by using the experimented data. The evaluation suggested that it is not proper to accept 2.5 power scale as the universal scale because there are variation according to the orientation of branch and the effect of d/D. Therefore, more precise understading on the phenomena and the reasonable model for the onset point of entrainment are requesting.



가

1

(Parameter)





.







(Bernoulli)

r = 4h/5

$$h_b = K \left[ \frac{\rho_g q^2}{g \Delta \rho} \right]^{0.2} \tag{1}$$

q . K 0.688 . Craya(1949)7⊦ , .

.

(non-circulatory waterspout)

(h)

 $C_1$ 

2.

 $(h_b/d)$ 

(d)

Froude

 $Fr_{g}\left(\frac{\rho_{g}}{\Delta\rho}\right)^{0.5} = C_{1}\left(\frac{h_{b}}{d}\right)^{C_{2}} \quad Fr_{g} = \frac{V_{3g}}{\sqrt{gd}}$ (2)

Froude

.

Rouse(1956)

Froude

Corwley

.

C<sub>2</sub> Zuber(1980)

, , . . Rothe(1981)  $C_1 C_2$ 

3.25

2

 $(V_{3g})$ 

4

•



Craya(1949)가

$$h_{b} = 0.688 \frac{W_{3g}^{0.4}}{\left[g\rho_{g}\left(\rho_{l}-\rho_{g}\right)\right]^{0.2}}$$
(3)  
$$C_{1} = 3.25 , C_{2} = 2.5$$

 $C_1 = 0.353, C_2 = 2.5$ 10 7

(2) Smoglie(1984) ,  $C_2$  ,  $C_1$ 

, Reimann et al.(1984)

.

d/D

가

UCB Schrock et al.(1986) 0.102m 가 3.76, 3.96, 6.72 mm  $C_1 = 0.395$ ,  $C_2 = 2.5$ (2)

5

(1)

 $C_1$ ,

가

## KfK

.

CENG Maciaszek et al.(1986)

Bharathan et al.(1982)



.



.

4

 $\delta = 1/3 h_b$ 

 $h_b = \frac{3}{2} \left( \frac{w_{3g}^2}{\pi^2 \rho_g \Delta \rho g \lambda^2} \right)^{1/3}$ (4) 가 가

, λ

 $h_b = 0.7 \left(\frac{w_{3g}^2}{\rho_g \Delta \rho g d^2}\right)^{1/3}$ (5)

(2) 
$$C_1 = 2.17$$
,  $C_2 = 1.5$ , KfK  $C_1 = 1.54$ ,

 $C_2 = 1.5$ 

 $(\lambda)$ 

0.1524m

## OSU Wu et al.(2000)

Maciaszek et al.(1986)

5cm

.

d

, Imaginary Potential Flow

.

가

가

.

$$\frac{\lambda}{d} \propto a \left(\frac{h_b}{d}\right) + 1 \tag{6}$$

(4)

,

.

а

 $h_{b}$ D

 $Fr_{g}\left(\frac{\rho_{g}}{\Delta\rho}\right)^{0.5} = K\left(\frac{h_{b}}{d}\right)^{1.5} \left[a\left(\frac{h_{b}}{d}\right) + 1\right] \left[1 - \left(\frac{h_{b}}{D}\right)^{2}\right]^{-0.5}$ (7) K = 1.0125, a = 0.22

Wu λ

d

Maciaszek et al.(1986)

 $Fr_{g}\left(\frac{\rho_{g}}{\Delta\rho}\right)^{0.5} = C_{1}\left(\frac{h_{b}}{d}\right)^{C_{2}} + C_{3}\left(\frac{h_{b}}{d}\right)^{C_{4}}$ (8)  $C_1 \sim C_4$ 1 •

1.

|  |  |         | KfK   | UCB   | CENG          | OSU  | RELAP5 |
|--|--|---------|-------|-------|---------------|------|--------|
|  |  | $C_1$   | 0.353 | 0.395 | 2.17          | 0.22 | 0.353  |
|  |  | $C_2$   | 2.5   | 2.5   | 1.5           | 2.5  | 2.5    |
|  |  | $C_{3}$ | 0     | 0     | 0             | 1    | 0      |
|  |  | $C_4$   | -     | -     | -             | 1.5  | -      |
|  |  | $C_1$   | 3.21  | 3.21  | 3.21          | -    | 3.21   |
|  |  | $C_2$   | 2.5   | 2.5   | 2.5           | -    | 2.5    |
|  |  | $C_1$   | 2.61  | 1.18  | 3.21          | -    | 2.61   |
|  |  | $C_2$   | 2.5   | 2.5   | 2.5           | -    | 2.5    |
|  |  | $C_1$   | 0.23  | 1.47  | $1 - R^{0.2}$ | _    | 0.46   |
|  |  | $C_2$   | 2.5   | 2     | 2.5           | -    | 2.5    |

1

2.5

 $C_2$ 

KfK

RELAP5

. UCB

CENG

•

2.5



2.5



|    | $C_2$ |     | 2.5    |     |       |        |
|----|-------|-----|--------|-----|-------|--------|
|    |       | KfK | RELAP5 |     | , UCB | , CENG |
|    |       | OSU |        |     |       |        |
|    |       |     |        |     |       |        |
|    |       | ,   |        | 2.5 |       |        |
|    |       |     |        |     |       |        |
|    |       |     |        |     |       |        |
| 3. |       |     |        |     |       |        |
|    |       |     |        |     |       |        |

/

2.5

KfK, UCB

, ,

• •

.

HGU KAIST 7 2 .

.

|                                     | 2     |                        |     |            |
|-------------------------------------|-------|------------------------|-----|------------|
|                                     | D(m)  | D/d                    |     |            |
| Reimann and<br>Khan(1986)<br>(KfK ) | 0.206 | 34.3, 25.7, 17.1, 10.3 | -   | , ,        |
| Schrock (1986)<br>(UC-Berkeley )    | 0.102 | 27.2, 25.8, 16.1, 10   | / - | <b>,</b> , |
| Moon and NO(2000)<br>(KAIST )       | 0.295 | 5.9, 4.2               | -   |            |
| Hwang and Lee(2002)<br>(HGU )       | 0.184 | 11.5, 7.4              | -   | , ,        |



.

4.

| 2 | KfK | UCB | / |
|---|-----|-----|---|
|   |     |     |   |

2.5

4.1



5

|       |         | 3.   |       |       |       |     |
|-------|---------|------|-------|-------|-------|-----|
|       | d(m)    | D/d  | C1    | C2    | 2.5   | (%) |
|       | 0.006   | 34.3 | 1.132 | 1.63  | -34.8 |     |
| KfK   | 0.012   | 17.1 | 0.352 | 2.44  | -2.4  |     |
|       | 0.020   | 10.3 | 0.295 | 2.8   | 12.0  |     |
|       | 0.00376 | 27.2 | 0.27  | 2.67  | 6.8   |     |
| UCB   | 0.00396 | 25.8 | 1.794 | 1.67  | -33.2 |     |
|       | 0.00632 | 16.1 | 0.474 | 2.45  | -2.0  |     |
| KAIST | 0.05    | 5.9  | 0.277 | 2.5   | 0.0   |     |
|       | 0.07    | 4.2  | 0.497 | 2.034 | -18.6 |     |
| HGU   | 0.016   | 11.5 | 0.389 | 2.316 | -7.4  |     |
|       | 0.0248  | 7.4  | 0.77  | 2.106 | -15.8 |     |





가

5



10

 $C_2$ 

2.5

•

•



가

±10%



가

7 . KfK HGU UCB

, 2.5

| 가 | . UCB | $h_{\!_b}/d$ 가 |       | KfK |
|---|-------|----------------|-------|-----|
|   | HGU   | $h_{\!_b}/d$ 가 | . KfK | UCB |

•



7.



|     |         | 4.   |      |      |        |     |
|-----|---------|------|------|------|--------|-----|
|     | d(m)    | D/d  | C1   | C2   | 2.5    | (%) |
|     | 0.006   | 34.3 | 4.83 | 2.12 | -15.20 |     |
| KfK | 0.012   | 17.1 | 4.46 | 2.03 | -18.80 |     |
|     | 0.020   | 10.3 | 3.33 | 2.11 | -15.60 |     |
| UCB | 0.00376 | 27.2 | 4.43 | 2.09 | -16.40 |     |
| HGU | 0.016   | 11.5 | 2.17 | 3.05 | 22.00  |     |
|     | 0.0248  | 7.4  | 2.75 | 2.28 | -8.80  |     |
|     |         |      |      |      |        |     |

| $C_2$ |   | 2.03 | 3.05 |
|-------|---|------|------|
| +22   | % |      | 16%  |

8

4

, 2.5

.

. ,

 $C_2$ 



8. C<sub>2</sub>

9 . UCB  $h_b/d$  7 KfK HGU  $h_b/d$  7 . UCB

KfK, HGU アト
・
、
UCB
、
アト
・
、
UCB
、
アト
・
、
UCB
、
アト
・
、
UCB
KfK, HGU
2.5 アト
アト
、

![](_page_12_Figure_0.jpeg)

5.

|         | d(m)          | D/d  | C1   | C2   | 2.5    | (%) |
|---------|---------------|------|------|------|--------|-----|
|         | 0.006         | 34.3 | 3.27 | 2.20 | -12.00 |     |
| KfK     | 0.012         | 17.1 | 4.53 | 1.82 | -27.20 |     |
|         | 0.020         | 10.3 | 2.56 | 2.38 | -4.80  |     |
| LICP    | 0.00376 (A-W) | 27.2 | 5.15 | 1.49 | -40.40 |     |
| UCD     | 0.00376 (S-W) | 27.2 | 4.84 | 1.19 | -52.44 |     |
| ИСИ     | 0.016         | 11.5 | 3.30 | 2.25 | -10.00 |     |
| поо     | 0.0248        | 7.4  | 3.65 | 1.84 | -26.40 |     |
|         |               | 2.5  |      | 가    |        |     |
| 가 . 2.5 | ±10%          | 가    |      | 7    | 2 가    |     |

 $C_2$ 

2.5

가

![](_page_12_Figure_6.jpeg)

10.

,

.

 $C_2$ 

11 . UCB KfK HGU . UCB KfK HGU ア . UCB KfK HGU . , UCB KfK, HGU . , UCB

2

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

![](_page_13_Figure_5.jpeg)

 $C_2$ 

가

.

![](_page_13_Figure_7.jpeg)

2

6.

|     | d(m)          | D/d  | C1   | C2   | 2.5 (%) |
|-----|---------------|------|------|------|---------|
| KfK | 0.006         | 34.3 | 1.33 | 1.60 | -36.00  |
|     | 0.012         | 17.1 | 0.47 | 2.07 | -17.40  |
|     | 0.020         | 10.3 | 0.64 | 1.80 | -28.00  |
|     | 0.00376 (A-W) | 27.2 | 2.49 | 1.70 | -32.00  |
| UCP | 0.00632 (A-W) | 16.1 | 2.13 | 1.78 | -28.80  |
| UCB | 0.00376 (S-W) | 27.2 | 0.65 | 2.03 | -18.64  |
|     | 0.00632 (S-W) | 16.1 | 2.38 | 1.32 | -47.20  |
| HGU | 0.0248        | 7.4  | 0.46 | 1.89 | -24.40  |

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_14_Figure_4.jpeg)

가

,,

"

가

- Charathan, D., Wallis, G.B., H.J., "Lower Plenum Voiding," J. Heat Transfer, 104, pp. 479-486, 1982
- Craya, A. Theoretical Research in the Flow of Non-Homogeneous Fluids, La Houille Blanche, pp. 44-55 (1949).
- Crowley, C.J. and Rothe, P.H., "Flow Visualization and Break Mass Flow Measurements in Small Break Separate Effects Experiments," Proc. of ANS Specialist Meeting on SBLOCA I LWRs, Monterey (1981).
- G.S. Hwang and J.Y. Lee et al. "OFF-TAKE EXPERIMENT AT T-JUNCTION BETWEEN HEADER AND FEEDER PIPES IN CANDU," NURETH-10, Seoul, OCT 2003
- Maciaszek, T. and Micaelli, J.C., The CATHARE Phase Separation Model in Tee Junctions, SETH/LEML-EM/89-159 (1989).
- Q. Wu, K.B. Welter, Y.Yao and J.N. Reyes, Jr. Stephen M. Bajorek, "Improvement and Evaluation of Models for Liquid Entrainment at an upward oriented vertical Branch Line from a Horizontal Pipe." Personal communication with Lee J.Y.(2000)
- Rouse, H., "Seven Exploratory Studies in Hydraulics," J. Hydr. Div. Proc. ASCE, HY4, pp(1038) 1-35, (1956)
- Schrock, V. E., Revankar, S.T., Mannheimer, R. and Wang, C-H., Small Break Critical Discharge The Roles of Vapor and Liquid Entrainment in a Straified Two-Phase Region Upstream of the Break, NUREG/CR-4761 (1986).
- Smoglie, C., "Two-Phase Flow Through Small Branches in a Horizontal Pipe with Stratified Flow, "Kernforschungszentrum Karlsruhe, (KfK) 3861 (1984).
- Thermal Hydraulics Group "RELAP5/MOD3 Code Manual Volume 4 : Models and Correlations", page 3-9, Scientech, Inc., NUREG/CR-5535 (1998)
- W. Bryce, Numerics and Implementation of the UK Horizontal Stratification Entrainment Off-Take Model into RELAP5/MOD3, AEA-TRS-1050, AEEW-R 2501, Atomic Energy Establishment Winfrith, March 1991.
- Y.M. Moon and H.C. NO, "Off-take Experiment at T-junction with Vertical-up Branch in the Horizontal Pipe," Journal of NUCLEAR SCIENCE and TECHNOLOGY, 2003.
- Zuber, N., Problems in Modeling of Small Break LOCA, NUREG-0724, U.S. Nuclear Regulatory Commission (1980).