7)

 Development of Nuclear Data Transmittal System for Real Time Core Analysis of

 PWR Simulator

 150

 71

 , ARCADIS (ANC and ROCS Cross-section And Discontinuity factor

 Interface System)

 3

 3

, 212 pcm , 1.0 2.7 %, 1.2 % ARCADIS 가

Abstract

ARCADIS (ANC and ROCS Cross-section And Discontinuity factor Interface System) program was developed for the automatic generation of group constants for the real time core analysis of PWR simulator using nuclear design systems. In order to verify the ARCADIS program, core reactivities, radial power distributions and control bank worths of Yonggwang unit 1 cycle 15 and Yonggwang unit 3 cycle 7 were calculated by the simulator core model and compared with the results by the nuclear design system. The maximum differences of the core reactivity of 212 pcm, the radial power distribution of 2.71 % and the individual bank worth of 1.2 % were estimated. These results imply that the group constant interface by ARCADIS is established appropriately.

1.

가

,

ARCADIS (ANC and ROCS Cross-section And Discontinuity factor InterfaceSystem)11(Westinghouse) 153(7

.

,

2. ARCADIS

2.1

.

$$\Sigma = \Sigma(B_0, T_{f0}, D_{m0}) + \frac{\partial \Sigma}{\partial B} \Delta B + \frac{\partial \Sigma}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \Sigma}{\partial D_m} \Delta D_m$$
(1)

, *B*, *T*_f, *D*_m

.

$$\Sigma = \hat{\Sigma}(B_0, T_{f0}, D_{m0}) + \frac{\partial \hat{\Sigma}}{\partial B} \Delta B + \frac{\partial \hat{\Sigma}}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \hat{\Sigma}}{\partial D_m} \Delta D_m + \Delta \Sigma_{CR}(B_0, T_{f0}, D_{m0}) + \frac{\partial \Delta \Sigma_{CR}}{\partial B} \Delta B + \frac{\partial \Delta \Sigma_{CR}}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \Delta \Sigma_{CR}}{\partial D_m} \Delta D_m + N_B \Biggl[\sigma_B(B_0, T_{f0}, D_{m0}) + \frac{\partial \sigma_B}{\partial B} \Delta B + \frac{\partial \sigma_B}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \sigma_B}{\partial D_m} \Delta D_m \Biggr] + N_{Xe} \Biggl[\sigma_{Xe}(B_0, T_{f0}, D_{m0}) + \frac{\partial \sigma_{Xe}}{\partial B} \Delta B + \frac{\partial \sigma_{Xe}}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \sigma_{Xe}}{\partial D_m} \Delta D_m \Biggr]$$
(2)

.

,

•

2

,

$$B \quad Xe \quad B^{10}$$

 $\hat{\Sigma} = \Sigma - N_B \sigma_B - N_{Xe} \sigma_{Xe}$
 $\Delta \Sigma_{CR} = \Sigma (rodded) - \Sigma (unrodded)$

.

2.2

.

ARCADIS		(2)
	3		

가

			2 12	2
가		Westinghouse	가 가	
		ABB-CE	DIT/ROC	S Westinghouse
PHOENIX/ANC	가			
		ARCADIS		
. ROCS				ANC

	Doppler
	. ROCS

ANC

. ARCADIS

.

가

.

(gap conductance)

.

gap conductance	. gap co	conductance	
	. < 1>	1	
gap conductance		1.0	

3.

1.0

3

ARCADIS			ROCS	ANC
3				
. ARCADIS				
(ICCC : Interface Couplin	g Coefficient Correc	tion)		
가 가 .				
		가		
	- ,			
	가		가	
. ARCADIS		< 2>		
		[3]		
	3			
		3		
· ,				
			DHCGEN	
DHCGEN			ARCADIS	•
DHOOLN			AROADIO	
ANC ROCS				
가			-	500

5%

500 pcm,

.

10%

3.1		1	15							
	1			ANC		. ANC				
				ANC	가	AF	RCADIS	6		
							3			
	A١	١C								
		. <	1>, <	2>						
					ANC					
			<	3>					1.0	
					1.1%					
					가					
		50%			D가 50%					<
4>	<	5:	>			<	6>	<	7>	
					5	6.5 pcm	,			
1	.0				0.5%	0		50%		D가
50%					54.2	pcm,		1.0		
				1.1%	D	•				
3.2	;	3	7							
	3			ROCS		. ROCS	i			

. ROCS < 3>, < 4> . 1.0 < 8> . 2.7% • 가 50% 5가 50% < 9> < 10> < 11> < 12> · 31.1 pcm, 1.0

0.3% 50% 57 50% 30.2 pcm, 1.0 0.3% .

4.

PHOENIX/ANC DIT/ROCS 가 가

ARCADIS (ANC

5.

	가			
,		1	,	3

6.

- J. J. Jeong et al., "MARS/MASTER Solution to OECD Main Steam Line Break Benchmark Exercise III," J. Korean Nucl. Soc., 32, 214 (2000).
- [2] , "RETRAN-MASTER-TORC ," KAERI/TR-2292/ 2002.
- [3] , " ," 2003 , , 2003. 10.
- [4] "User's Manual for DIT Discrete Integral Transport Assembly Design Code," CE-CES-11 Rev. 3-P, 1994.
- [5] "User's Manual for ROCS Coarse and Fine Mesh Advanced Diffusion Theory Code for Reactor Core Analysis," CE-CES-4 Rev 11-P, 1996.
- [6] T. Q. Nguyen et al., "Qualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores, WCAP-11596-P-A, 1988.

< 1>

			(ncm)
	ANC	ICCC	(pen)
	1.09202	1.09201	-0.9
(1000 ppm)	1.05584	1.05568	- 14.1
(1 ppm)	1.13148	1.13154	4.6
1.0	1.07998	1.08002	3.5
2.0	1.07343	1.07346	2.8
320	1.08102	1.08069	-28.3
250	1.09974	1.10013	32.6
180	1.10432	1.10542	90.6
100	1.10503	1.10698	159.9
27	1.10473	1.10733	212.0

< 2>

ANC

ANC

		(pcm)	
	ANC	ICCC	(%)
	7721.9	7688.3	-0.4
(1000 ppm)	7752.9	7726.7	-0.3
(1 ppm)	7680.9	7643.5	-0.5
1.0	7925.6	7796.0	-0.4
2.0	7873.8	7844.2	-0.4
320	8215.4	8204.8	- 0.1
250	7237.7	7188.0	-0.7
180	6699.9	6642.0	-0.9
100	6297.6	6243.0	-0.9
27	6065.5	5991.9	- 1.2

< 3>

ROCS

	ROCS	ICCC	(pcm)	
	1.06074	1.06073	- 1.3	
(1000 ppm)	1.01846	1.01851	- 5.2	
(1 ppm)	1.10768	1.10758	-7.8	
2.0	1.05452	1.05447	-4.8	
	1.07035	1.07043	7.1	
320	1.05195	1.05179	- 14.5	
250	1.07033	1.07035	18.1	
180	1.07679	1.07731	45.4	
100	1.08069	1.08155	73.6	
27	1.08292	1.08398	91.0	

< 4>

ROCS

		(pcm)	
	ROCS	ICCC	(%)
	14519.5	14447.0	-0.5
(1000 ppm)	14442.6	14371.6	-0.5
(1 ppm)	14607.3	14533.9	-0.5
2.0	14625.1	14554.0	-0.5
	14352.9	14275.8	-0.5
320	15480.4	15421.3	-0.4
250	13273.7	13185.5	-0.7
180	12035.7	11929.8	-0.9
100	10998.9	10882.1	- 1.1
27	10387.5	10267.7	-1.2

< 1>

< 2> ARCADIS

1.385	1.635	1.045	2.350	1.781	1.301	0.446	0.394
1.381	1.644	1.047	2.342	1.776	1.310	0.447	0.393
0.3	-0.6	-0.2	0.3	0.3	-0.7	- 0.3	0.3
1.635	0.849	1.768	2.220	1.790	0.787	0.932	0.292
1.644	0.853	1.775	2.195	1.792	0.790	0.937	0.287
-0.6	-0.5	-0.4	1.1	- 0.1	-0.4	- 0.5	1.8
1.045	1.776	1.099	1.547	0.793	0.778	0.391	
1.047	1.782	1.105	1.553	0.796	0.782	0.393	
-0.2	-0.4	- 0.5	-0.4	-0.4	- 0.5	- 0.6	
2.350	2.241	1.588	0.735	0.729	0.305	0.155	
2.342	2.217	1.593	0.737	0.731	0.307	0.156	
0.3	1.1	- 0.3	-0.2	- 0.3	-0.7	- 0.8	
1.781	1.852	0.888	0.901	0.342	0.164		
1.776	1.852	0.889	0.902	0.342	0.164		
0.3	0.0	-0.2	- 0.1	0.0	0.1		
1.301	0.847	1.014	0.790	0.265			
1.310	0.850	1.015	0.774	0.264			
-0.7	-0.3	- 0.1	2.0	0.5			
0.446	1.024	0.501	0.277				
0.447	1.027	0.502	0.277				
-0.3	-0.3	-0.3	0.0				
0.394	0.315						ICCC
0.393	0.310						ANC
0.3	1.7						%

<	3>

1 ICCC/ANC

(ARI)

0.901 0.904	1.210 1.213	1.047 1.048	1.257 1.260	1.035 1.035	1.206 1.209	0.782 0.783	0.455 0.453
0.3	0.2	0.0	0.2	0.0	0.3	0.1	-0.4
1.210 1.213 0.2	0.958 0.960	1.232 1.230	1.278 1.277 - 0.1	1.291 1.293	1.265 1.264	1.221 1.216	0.347 0.345
1.047 1.048 0.0	1.230 1.228 - 0.2	1.272 1.271 -0.1	1.327 1.330 0.2	1.248 1.247 - 0.1	1.168 1.172 0.4	1.011 1.006	0.0
1.257 1.260 0.2	1.269 1.267 -0.1	1.324 1.327 0.2	1.225 1.224 -0.1	1.081 1.084 0.3	0.809 0.810 0.1	0.334 0.333 - 0.4	
1.035 1.035 0.0	1.288 1.290 0.2	1.246 1.245 -0.1	1.079 1.083 0.4	0.746 0.747 0.1	0.315 0.314 - 0.3		I
1.206 1.209 0.3	1.264 1.263 -0.1	1.167 1.171 0.4	0.809 0.809 0.0	0.316 0.316 0.0			
0.782 0.783 0.1	1.220 1.215 - 0.4	1.011 1.006 - 0.5	0.334 0.333 - 0.3				
0.455 0.453 -0.4	0.348 0.346 -0.7		<u> </u>	•			ICCC ANC %

< 4> 1 ICCC/ANC

(ARO)

1.385 1.381	1.635 1.644	1.045 1.047	2.350 2.342	1.781 1.776	1.301 1.310	0.446 0.447	0.394 0.393
0.3	-0.6	-0.2	0.3	0.3	-0.7	- 0.3	0.3
1.635 1.644	0.849 0.853	1.768 1.775	2.220 2.195	1.790 1.792	0.787 0.790	0.932 0.937	0.292 0.287
-0.6	-0.5	-0.4	1.1	-0.1	-0.4	- 0.5	1.8
1.045 1.047	1.776 1.782	1.099 1.105	1.547 1.553	0.793 0.796	0.778 0.782	0.391 0.393	
2.350 2.342	2.241 2.217	1.588 1.593	0.735 0.737	0.729 0.731	0.305 0.307	0.155 0.156	
0.3	1.1	-0.3	-0.2	-0.3	-0.7	- 0.8	
1.781 1.776 0.3	1.852 1.852 0.0	0.888 0.889 - 0.2	0.901 0.902 - 0.1	0.342 0.342 0.0	0.164 0.164 0.1		
1.301 1.310 -0.7	0.847 0.850 - 0.3	1.014 1.015 -0.1	0.790 0.774 2.0	0.265 0.264 0.5			
0.446 0.447 -0.3	1.024 1.027 - 0.3	0.501 0.502 - 0.3	0.277 0.277 0.0		,		
0.394 0.393 0.3	0.315 0.310 1.7	0.0	5.0	1			ICCC ANC %

ICCC/ANC

50%

(

D 50%)

<	7>	1	50%	ICCC/ANC	(D 50%)
---	----	---	-----	----------	-----------

0.578 0.605	0.886 0.914	1.403 1.417	0.913 0.922	0.703 0.705	0.950 0.949	0.937 0.929	0.631 0.631
-4.5	- 3.1	- 1.0	- 1.0	-0.3	0.0	0.9	0.0
0.886 0.914	1.020 1.048	0.727 0.746	0.979 0.992	0.918 0.921	0.757 0.756	1.349 1.337	0.706 0.706
- 3.1	-2.7	-2.6	- 1.4	-0.4	0.1	0.9	- 0.1
1.403 1.417	0.728 0.747	1.622 1.631	1.091 1.101	1.601 1.591	1.191 1.187	1.138 1.126	0.505 0.504
- 1.0	-2.6	- 0.6	-0.9	0.6	0.3	1.1	0.1
0.913 0.922	0.977	1.088 1.099	0.793 0.804	0.947 0.943	1.084 1.078	1.273 1.265	
- 1.0	- 1.4	-0.9	- 1.4	0.4	0.6	0.6	
0.703 0.705	0.916 0.919	1.598 1.589	0.947 0.943	1.252 1.226	1.362 1.339	0.636 0.629	
-0.3	-0.4	0.6	0.4	2.1	1.7	1.1	
0.950 0.949	0.757 0.756	1.191 1.187	1.077 1.071	1.360 1.337	0.502 0.507		
0.0	0.1	0.3	0.6	1.7	- 0.8		
0.937 0.929	1.347 1.335	1.137 1.125	1.270 1.262	0.634 0.627			
0.9	0.9	1.1	0.6	1.1	ļ		
0.631 0.631 0.0	0.705 0.705 -0 1	0.504 0.503 0.1					ICCC ROCS %
0.0	0.1	0.1	1				/0

< 8>

3

ICCC/ROCS

ARI)

(

0.871	1.166	1.245	1.149	0.998	1.265	0.994	0.455
-0.1	-0.2	-0.1	-0.2	- 0.1	0.0	-0.1	0.430
1.166	1.292	0.829	1.182	1.125	0.942	1.221	0.629
1.163	1.288	0.827	1.180	1.124	0.943	1.221	0.631
-0.2	-0.3	-0.2	-0.2	- 0.1	0.0	0.0	0.3
1.245	0.830	1.278	1.138	1.289	1.293	1.137	0.357
1.244	0.828	1.276	1.136	1.290	1.294	1.138	0.358
- 0.1	-0.2	- 0.1	-0.2	0.1	0.1	0.1	0.3
1.149	1.181	1.136	0.893	1.025	1.134	1.038	
1.147	1.179	1.134	0.893	1.026	1.136	1.040	
0.2	-0.2	- 0.2	0.0	0.1	0.2	0.2	
0.998	1.124	1.288	1.026	1.262	1.079	0.396	
0.997	1.123	1.289	1.027	1.264	1.081	0.397	
-0.1	- 0.1	0.1	0.1	0.2	0.2	0.3	
1.265	0.943	1.294	1.128	1.077	0.422		
1.265	0.943	1.295	1.130	1.079	0.423		
0.0	0.0	0.1	0.2	0.2	0.2		
0.994	1.220	1.136	1.036	0.395			
0.994	1.220	1.137	1.038	0.396			
-0.1	0.0	0.1	0.1	0.2	ļ		
0.455	0.629	0.357					ICCC
0.456	0.631	0.358					ROCS
0.2	0.3	0.2					%

3

ICCC/ROCS

(ARO)

0.841	1.140 1.138	1.206	1.072	0.811	1.217	0.996	0.453
-0.4	-0.1	0.0	-0.3	-0.2	0.0	-0.1	-0.1
1.140	1.267	0.793	1.134	1.068	0.923	1.250	0.636
1.138	1.267	0.789	1.133	1.066	0.921	1.252	0.638
-0.1	0.0	-0.4	-0.1	-0.3	-0.2	0.2	0.4
1.206	0.794	1.260	1.126	1.303	1.335	1.184	0.361
1.207	0.790	1.261	1.125	1.304	1.335	1.187	0.361
0.0	-0.5	0.1	-0.2	0.1	0.0	0.2	0.0
1.072	1.133	1.125	0.891	1.051	1.186	1.093	
1.069	1.132	1.123	0.889	1.050	1.186	1.096	
-0.3	- 0.1	-0.2	-0.3	- 0.1	0.0	0.3	
0.811	1.066	1.302	1.052	1.330	1.138	0.409	
0.809	1.064	1.303	1.051	1.333	1.142	0.410	
-0.2	-0.3	0.1	-0.1	0.2	0.3	0.1	
1.217	0.924	1.335	1.179	1.136	0.436		
1.217	0.922	1.336	1.179	1.140	0.436		
0.0	-0.2	0.0	0.0	0.3	0.0		
0.996	1.249	1.183	1.090	0.408			
0.995	1.251	1.186	1.093	0.408			
-0.1	0.1	0.2	0.3	0.0			
0.453	0.635	0.360		_			ICCC
0.452	0.638	0.360					ROCS
-0.1	0.4	0.0					%
			-				

(

5 50%)

