

2004

Application of the Visual System Analyzer (ViSA) for RETRAN-3D: Simulation of Steam Generator Tube Rupture Accident at Ulchin Units 4

RETRAN-3D GUI

3/4

Abstract

가

Korea Atomic Energy Institute (KAERI) has developed Visual System Analyzer (ViSA) based on MARS and RETRAN-3D codes. ViSA is composed of two parts; the best estimate (B-E) codes including plant input and Graphic User Interface (GUI) that includes the plant mimic and an interactive control function, etc. The calculation results of the B-E code are transferred to a user via GUI and the user can apply the operator's action into the B-E code using an interactive control function. Therefore, it is not necessary to prepare the complex control input data to simulate the various operator's actions which may occur during the transient. In this study, the Steam Generator Tube Rupture (SGTR) Accident occurred at Ulchin Unit 4 is simulated using ViSA and the simulation results are compared with the measured plant data. The RETRAN-3D plant input data used in this simulation is designed for the

simulation from normal operation condition to Small-Break LOCA and includes a required plant control input. From the results of SGTR simulation, we can find out the effectiveness of GUI function in ViSA as well as the soundness of input data for Ulchin Unit 3/4.

2.1 3/4 RETRAN-3D

Point Kinetics Model

,

(Heat Capacity)

U-tube

1, 2

.

, 가

,

1.

3/4

nodalization

.

2.2 RETRAN-3D

.

, , 가

RETRAN-3D

.

[1]

	0	CPU Tim	e: 3636 sec Elep	d Time : 24.65 se	Ank Sug					
ject Ca	lcalat	ion Data System Trip Messa	Mimic Nodelization Inte get	ective Costrol Trend Graph Interactive Control						
națianți		Trip condition	Description	Description	Value	Auto/Masual	Trip/Target	Setpoint Rate		
91121 + 11	2	F at 0.000E+0	GENERAL TIME 2000	HOT LEG 2 BREAK	False	Are Manual	0	1000000.0		
4035+0	200	F at 0.000E+0	LOW PINER RESET	SETRI	Folse	Ada Hanad	0	1000000.0		
auge-2	131	F at S.BHE-1	HHE DENERO	SGTR 2	Fake	Auto C Hanud	0	1000000.0		
100E-2	137	F at 7.508E+1	RX POLER 75%	MSLB TA	Fate	Andre Ti Married	Ö	1000000.0		
1025-2	172	F at 1.048-0	HIGH LUND THE RYD DOR	MOLE 28	False	Ada C Manual	õ	1000000.0		
IDRE-2	176	F at 0,000E+0	LETTON START	SERVICE ORF (N)	1.0000	And Chand	1.111	0.0		
1025-7	177	F at 0.0005-0	DREADTS OF MOMENT STRE	1000000000	1.0000	Const Change		40		
100E-2		F at 3.500E+0	CEN HI KATE INSERTION	P29 5V1 (t)	90.0800	Ado Manual	56.00	25.0		
ASTE-2	131	F at S.HHE-1	ATT DENEND	1729 SV2 (5)	1.0080	Auto Manual	8.06	0.0		
6765-1		H at 5, MIR-1	CEA DISERVICEN DEPENDENT	P2H 5V3 [57	1.0080	Ada Hand	8.00	0.0		
		F at 1.0000-1	GENERAL TIME 0.1	5076120	1.0080	Auto D Married	8.08	0.0		
				1010 2130	1.0000	Ada T Married	8.00	0.0		
71			1 500/	CPV BI	105.8000	Anto Different	0.00	0.0		
∕ ⊺			1 30%	CON PALOD	19/0872	And Chinese	[10.02]	0.0		
:2		$0 \rightarrow 50$	% 가	NE Pacific	ton man	A Charles	6.00	00		
			And a second particular	100.000	Contraction of the second					
				Staz DCDN PW(R)	10.0702	Auto Manual		4.0		

2-2.

3. 4

. SGTR

18.5

general table point-kinetics 0.6 % 16.9 MWt ([4], Fig.8.3). 1

•

Extended Henry-Fauske/Moody

•

57.3 lbm/sec [3]

55.6 lbm/sec

1.	4 ([3], p.9)
00:10		
17:50	RCS ,	7 : $158.3 \text{ kgf/cm}^2\text{A}$
18:33	가	가 : 34.6 %
18:34		
18:35	1 가 (3)	
18:38	가 ' ' reset	$: 98.0 \text{ kgf/cm}^2\text{A}$
18:42	가 가 '0'	
18:46	SG #2	MSIV, MSIVBV, MFIV
18:49		7 : 103 kgf/cm ² A
18:54	SBCS V001	SG #1
18:58	SG #2 (95% NR)	SG #1/2
19:00	SG #2 jog open	SG #2 가
19:05	가	
19:07	SG #1	D/C MFIV
19:14		7 : 118 kgf/cm ² A
19:15	가	
19:22	RCS SG #2 $3.5 \text{ kgf/cm}^2\text{A}$	83.3 / 80.3kgf/cm ² A
19:31	1	
19:34	1 가	
19:39	02A	가
19:52	1 가	
19:57	02A	
19:59	1 2	74.2 kgf/cm ² A

- 4. 4
 - 3/4 RETRAN-3D

.

4.1

	Turbine bypass va	alve	(3~4%)	
가	158.3 kgf/cm ² A	RCS	289 °C	
#2			1	

4

				(%)	
	(MWt)	16.89	16.89	0.0	Ref. [4], p.351, fig.8.3
가	(kgf/cm ² A)	158.3	158.8	+0.3	
가	(%)	34.8	34.4	-1.1	Ref. [3], p.30
	()	289.1	288.26	-0.3	Ref. [3], p.14
	(kgf/cm ² A)	74.755	72.8	-2.6	Ref. [3], p.50
	#2 (%)	35.46	35.68	+0.6	Ref. [3], p.50
	(kg/s)	10.52	10.42	-0.95	Ref. [3], p.46
S/G #2	(lbm)	210000	211198	-0.57	Ref. [3], p.41

.

4.2

2 1 . 2-1, 2-2 • 1800 [3] 1/2 가 1800 가 . .

•

•

1/2

1

	0
	- 1
•	~

RCS ,	4000
가	SGTR 2 Trip 'On' ()
	가
	1
1 7 (3)	3
가 ' ' reset	reset
	SI trip 'Off'
SG #2	SG #2 MSIV MFIV
	SI actuation trip 'On'
SBCS V001	TBV (2 ~ 4%)
SG #2 (95% NR)	
SG #2 jog open	SG #2 MSIV (20%)
가	Spray 1/2 100%
SG #1	SG #1 D/C MFIV 10~15%
	SI fill junction 0%
가	150 % 7t ²
1	3
1 가	
02A	가 가
1 가	
02A	
1 2 :	1 2 :
74.2 kgf/cm ² A	~ 81 kgf/cm ² A

3

¹

4.2 가 1800 ViSA , 가 / , • 가 [3] / 1800 ViSA 4.2.1 (~1800) 가 RCS / [3] . 3 가 .3 1200 ViSA . ViSA 가 . 가 1200 가 [3] CESEC-III . RELAP5 ViSA 4.2.2 (~1800) Maximum safeguards SGTR Inadvertent SI injection . . 가 가 ViSA (4.6 kgf/cm²A) . 107 ~ 133 kgf/cm²A 120 kgf/cm²A 2 가 $2 \sim 4 \text{ kg/s}$ (.4). .5) (가 가 . 4.2.3 가 (~1800) 가 가 가 / [3] . 'Actual level' Actual level ViSA . 가 .

		가							7
(.8).								
가									
		ViSA			가				(.7)
ViSA	가		Two-re	egion non-	-equilibr	ium model			· · · ·
				0					
		가						가	
	-	7ŀ							
	-	1							·
							Two-region n	on-equilibri	um mode
						·	rivo regioni n	on equilion	uni niout
									6
ViSA						가			.0
VISA		고				~1			
		~1				·			
424				(190	0)				
4.2.4		71		(~100	0)				
1	VCCA	7				25.0/	05100/		
	VISA					2.5 %	0.5~1.0 %		
						1			71
					•	1			∠ r
2 2	1 6/	2.				. 1			
-2 ~ +3	kgf/cm	ĨĂ				#2			
MSIV jog op	en				,	,			
			-1		(.9~10).			
가			가					~~~~~	
ViSA						[3]		CESEC-III	
							.11		_1
		#2	가		780		CESEC-III		가
								CESEC-III	
									가
ViSA						가 .			
4.2.5			(0	~)			
[3]	1800							
ViSA						•	.12		
#1						가		1	

3200

1

4.

7. 가

HHSI

8. 가

9.

가

#2

/

#1

•

company, 1983.