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1. Introduction 

 

Several grade of 9~12Cr tempered martensitic steels 
are candidate materials for structure components for 
Generation IV nuclear power plants. Mod.9Cr-1Mo 
steel (ASTM Grade 91) became to be used as the 
structural material for high temperature components of 
a Sodium-cooled Fast Reactor [1] such as IHTS piping 
and heat exchangers, since it has high strength, 
toughness and resistance to degradation in corrosive of 
oxidizing environment compared to austenitic 
steels.[2~3]. 

Mod.9Cr-1Mo steel structure can be damaged by 
creep, fatigue and creep-fatigue interaction due to high 
temperature operating condition in a sodium-cooled fast 
reactor.  

This paper addresses the high temperature isothermal 
low cycle fatigue of Mod.9Cr-1Mo steel. Repeated 
cyclic strain between tension and compression loading 
is applied. The test is carried out for a temperature at 
600℃ and strain condition range of 0.8~1.2%. The low 
cycle fatigue(LCF) damage that accounts for 20 percent 
of total damage represents a prominent failure mode [4].  

The set of data is plotted based on the Coffin-Manson 
method and strain energy method. Then, the unknown 
parameters of each method were estimated. In order to 
predict the low cycle fatigue life of Mod.9Cr-1Mo steel, 
relations between strain energy density and number of 
cycles to failure are examined.  

 

2. Low cycle fatigue evaluation methods 

 
2.1 Coffin-Manson method  

The stress-strain curve for low cycle fatigue is 
comprised of two parts that is both linear elastic and 
plastic strain. 
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Where  𝜎𝑓′, 𝜀𝑓′ , b and c are material parameters 
 

2.2 Strain energy method  
The plastic strain energy of material suffered for 

repeated loading is as like follows (R=-1). This energy 
represents integration of area on hysteresis loop.  
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The total strain energy of material suffered for 

repeated loading is as like follows (R=-1).  
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The total strain energy method is used for small strain 
amplitude. Because strain amplitude is proportional to 
plastic strain energy, it has trouble in measuring very 
small strain energy density [5~6].  

A relationship between plastic strain energy density 
and cycles-to-failure(𝑁𝑓) may be written as Eqs.(4~5): 

 

∆𝑊𝑝 = 𝐴(𝑁𝑓)𝑚                          (4) 

 ∆𝑊𝑡 = 𝜒(𝑁𝑓)𝛼                          (5) 

where  𝐴, 𝑚, 𝜒, and 𝛼  are material parameters. 
 

3. Experimental procedures 
 

The material used in this study was Mod.9Cr-1Mo 
steel.  The chemical composition is shown in Table1.  

LCF specimens are manufactured to uniform gauge 
type according to ASTM E 606[7]. The test is carried 
out by using electro hydraulic servo-controlled fatigue 
testing machine. The high temperature extensometer, of 
which gage length is 12.5 mm, is used to control the 
strain. The loading frequency is 0.25 Hz.  

 

 
Fig. 1 Shape and dimension of LCF test specimen 

 
Table 1.  Chemical composition of the Mod.9Cr-1Mo steel (wt.%) 

Compositions C Cr Si Mn Ni Mo V Nb 

Mod.9Cr-1Mo 

steel 
0.1 8.59 0.39 0.43 0.007 0.96 0.21 0.07 
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3. Results and Discussions 

 

Fig. 2 shows both hysteresis loop and stress-life 
curves at 600℃ for Δε=0.8, 1.0, and 1.2 %, respectively. 
With increasing strain amplitude, the stress range is 
decreased and plastic deformation area is increased. But, 
maximum stress makes no difference for stress-life 
curves. Simply, strain-softening behavior was observed 
to see a decreasing maximum stress as test cycle 
continues. 

Fig. 3 represents relationship between strain 
amplitude and fatigue life obtained from the Coffin-
Manson and Table 2 shows evaluated Coffin-Manson 
formula. The transition fatigue lives are 1401 reversals 
and LCF dominant fracture is obtained under transition 
fatigue lives. 

Table 3 shows both plastic and total strain energy 
densities obtained by calculating area of each hysteresis 
loops.  
 

  
     (a) hysteresis loops       (b) stress-life curves 

 
Fig. 2  LCF characteristic of Mod.9Cr-1Mo at 600℃ for 

various strain range  

 
Fig. 3 Relationship of strain-life curves at 600℃ 
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Reversals to failure (2Nf)

 Total strain
 Plastic strain
 Elastic strain

Equation y = a + b*x

Weight No Weighting

Residual Sum 
of Squares

2.16166E-5

Adj. R-Square 0.9989
Value Standard Error

plastic strain Intercept 4.12832 0.10753

plastic strain Slope -1.57862 0.037

Equation y = a + b*x

Weight No Weighting

Residual Sum 
of Squares

1.73793E-5

Adj. R-Square 0.87595
Value Standard Error

elastic strain Intercept -0.43316 0.09642

elastic strain Slope -0.12902 0.03318

Table 2. Equation of calculated results by the Coffin-Manson method 

Temp. (°C) Coffin-Manson formula 
600 ∆𝜀𝑡/2 = 10−0.43316(2𝑁𝑓)−0.1292 + 104.12832(2𝑁𝑓)−1.57862 

                      Table 3. Equations of calculated results by plastic and total strain energy densities 

Temp. (°C) Plastic strain energy density Total strain energy density 

600 𝑊𝑝 = 5845073.81(𝑁𝑓)−1.46139 𝑊𝑡 = 2761404.32(𝑁𝑓)−1.34033 


