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1. Introduction 
The stiffness confinement method (SCM) introduced 

by Chao[1] originally for point kinetics solution was 
also extended to spatial kinetics[2]. Recently, Chao 
proposed a refinement of SCM which is to provide a 
systematic way to update the amplitude frequency in 
spatial kinetics solution.[3] The primary advantage of 
the SCM is that it is possible to use larger time step 
sizes.  This advantage comes from the fact because the 
SCM involves the solution of an eigenvalue problem 
instead of the ordinary form of a fixed source problem. 
Since using a large time step size is strongly desired in 
the direct whole core transport calculation for transient 
problems, we investigate here the SCM for spatial 
kinetics first with a simple one-dimensional, one-group 
diffusion equation and propose an improved 
formulation. The performance of the improved SCM for 
spatial kinetics is assessed by comparing the SCM 
solutions with the standard method solutions employing 
the Crank-Nicholsen method with exponential 
transform.[4]  

 
2. SCM for Spatial Kinetics  

In order to derive the SCM for spatial kinetics, the 
dynamic frequency should be defined first and the 
splitting of the dynamic frequency into the amplitude 
and the shape frequencies need to be made. Then the 
method to determine the two frequencies can be derived 
systematically. 
 
2.1 Amplitude and Shape Frequencies 
 

The dynamic frequency is interpreted as the 
instantaneous relative change rate of flux and is defined 
as:  
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The solution of Eq. (1) is obtained as: 
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where tn-1 is a time point which would be the beginning 
time of the n-th time step when the time domain is 
discretized. By approximating the integral in the 
exponent as:  
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in terms of the average dynamic frequency for the n-th 
time interval, Eq. (2) can be expressed as: 
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where 1nt tτ −= − . Noting that it is possible to factorize 

1( , )nx tφ −  into the amplitude and shape parts as: 
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in terms of the flux shape function normalized such that: 
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it is also possible to split the dynamic frequency into the 
amplitude part and the space-dependent part as: 
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with the overbar sign omitted for brevity. In order to 
make the splitting unique, the constraint of 
normalization is needed for the shape flux at t as: 
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2.2 Derivation of Static Eigenvalue Equation 

 
With the flux approximation by Eq. (7) and the 

corresponding definition of the precursor frequency that 
would lead the following exponential variation:  
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where i is the precursor group index, the following 
equation can be obtained from the time-dependent 
diffusion equation in which the time derivative can be 
easily obtained by the use of the exponential function 
for the time variation: 
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where the dynamic eigenvalue Dk is introduced in order 
to mitigate the imbalance between the LHS and RHS 
terms to appear when using inexact values of the 

amplitude and shape frequencies. The ( )n x
v

ω term is 

considered as a pseudo absorption cross section that is 
added in the transient problem. The use of this pseudo 
absorption cross section on the LHS is different from 
Chao’s approach[3] where it is merged with the fission 
term on the RHS. Since there are nonfissile regions in 
the core, however, using the pseudo absorption cross 
section which would appear everywhere would be more 
physical. The two components of the dynamic 
frequency, namely, the single value of the amplitude 
frequency and the space dependent values of the shape 
frequency can be obtained in a systematic way 
iteratively to make 1.Dk = This is similar to the critical 
boron search process except that the shape frequency 
can be obtained as follows using the eigenfunction of 
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the eigenvalue problem satisfying the normalization 
condition of Eq. (8) as: 
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where l is the iteration index for forming the eigenvalue 
problem of Eq. (10).  

The precursor density at the end of the time step is 
updated as follows in terms of the total frequency 
consisting of the l-th amplitude and shape frequencies: 
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and the precursor frequency, , ( )n l
iu x , can be updated by 

using the inverse relation of Eq. (9). 
 

3. Performance Examination 
The test problem is a one-dimensional, one-group rod 

ejection problem in a 400cm high core in which the 
control rod having worth of 1.5$ is ejected in 0.1 sec. 
The reference solution was obtained with the Crank-
Nichosen method with exponential transform (CNET) 
using 0.1 msec. The spatial discretization was done with 
the finite difference method employing the mesh size of 
1cm. 

First of all, the amplitude frequency and the shape 
frequencies were obtained from the solution to examine 
dependence of the dynamic frequencies on the time step 
sizes used to evaluate those frequencies by using the 
inverse relation of Eq. (4). It is noted that in Fig. 1 that 
the amplitude frequency and the shape frequencies at 
three axial positions are very well measured with even a 
large time step size of 10 msec.  
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Fig. 1. Dynamic frequencies obtained from reference. 
 

The result of the SCM calculation is now compared 
with those of the CNET solutions obtained with various 
time step sizes. As shown in Fig. 2 which shows the 
behavior of the relative core power, the CNET method 
performs well with the time step sizes upto 10 msec, but 
the accuracy deteriorates with 20 msec. The SCM 
results, however, are good with 20 msec and even the 
50 msec case looks reasonable. This demonstrates the 

capability of the SCM in using large time step sizes. 
The normalized flux shape obtained when the control 
rod is ejected by 40% is now compared in Fig. 3. It is 
shown that the shape obtained with SCM with 10 msec 
is slightly worse than that of the CNET with 10 msec, 
but still the agreement is good. 
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Fig. 2. Comparison of relative core power changes 
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Fig. 3. Comparison of the normalized flux shapes  

 
4. Conclusions 

The stiffness confinement method for spatial kinetics 
was refined with the pseudo absorption term 
representing the dynamic frequencies. It was verified 
that the proposed SCM works much better than the 
Crank-Nicholsen method with exponential transform in 
that time step sizes larger than 20 msec can be using in 
a super prompt-critical transient involving 
1.5$ reactivity insertion. Since this method uses the 
steady-state eigenvalue solution framework, this 
method can be effectively used in transient direct whole 
core transport problems in which sufficiently large time 
step sizes are required to save excessive computing time. 
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