Depletion and Decay Analyses of a KJRR Fission Moly Target

Kyung-Hoon Lee*, Jae-Seung Song, Hee-Taek Chae

Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353, Republic of Korea ^{*}Corresponding author: lkh@kaeri.re.kr

1. Introduction

⁹⁹Mo is a parent radioisotope of ^{99m}Tc that is one of the most widely used medical diagnostic agents. Further growth in demand of ⁹⁹Mo has been predicted [1]. ⁹⁹Mo is mostly produced from the fission of ²³⁵U in a research reactor to obtain a higher specific activity [2]. However, ⁹⁹Mo used in Korea depends entirely on imports. To ensure a stable supply via domestic production of ⁹⁹Mo, the KIJANG research reactor (KJRR) project is going on. The KJRR core has been designed with the aim of ⁹⁹Mo production over 2,000 curies per week using six target assemblies consisting of eight plate-type targets. The low-enriched uranium (LEU) of UAlx-Al with ²³⁵U enrichment of 19.75 w/o is used as a target material.

In this paper the ⁹⁹Mo production of a KJRR fission moly (FM) target was evaluated. Depletion and decay calculations were performed by the ORIGEN-S [3] code with problem-dependent cross-section library generated by using TRITON [3], and the results were compared with those of the TRITON, McCARD [4], and HELIOS [5] calculations.

2. Methods and Results

2.1 KJRR & FM Target Assembly

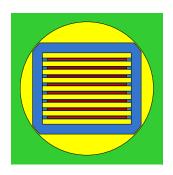


Fig. 1. KJRR FM target assembly cross-sectional view.

The KJRR has been developed at KAERI for the radioisotope (RI) production and neutron transmutation doping (NTD). The KJRR core is composed of 22 plate-type fuel assemblies. Each fuel assembly consists of 21 fuel plates with a high-density, low-enriched U-Mo fuel meat of 19.75 w/o. Also, the core is designed to produce ⁹⁹Mo using 6 plate-type FM target assemblies at power operation. As shown in Fig. 1, each FM target assembly consists of 8 plates with a 19.75 w/o enriched UAlx-Al target, which is composed of 71.35 w/o uranium and 28.65 w/o aluminum and has a density of 3.645 g/cc.

2.2 Analysis Method

Our analysis procedure is as follows:

1) Obtain the fission power of each FM target through a 3-dimensional KJRR core calculation using the MCNP code,

2) Generate the problem-dependent cross-section library to be used the ORIGEN-S calculation from a 2dimensional FM target assembly depletion calculation with the reflecting boundary condition using the TRITON code,

3) Preform the ORIGEN-S depletion and decay calculations with the fission power obtained from the procedure 1 and the problem-dependent cross-section library generated in the procedure 2.

In this study it is assumed that the average fission power of a target assembly is 80 kW. By using the calculated power density, the ⁹⁹Mo production was assessed with four different codes capable of depletion and decay analyses such as ORIGEN-S, TRITON, McCARD, and HELIOS. Fig. 2 shows various code models for a KJRR FM target assembly. All calculations were performed with the condition of 7-day irradiation and 8-day decay from end-of-irradiation (EOI).

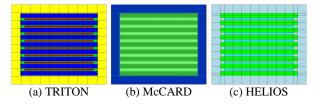


Fig. 2. The code models for a KJRR FM target assembly.

According to our analysis procedure, the ORIGEN-S calculations were conducted with problem-dependent cross-section library. This library was generated by the TRITON code with a 238-group library based on the ENDF/B-VII R0. TRITON, one of the control modules included in SCALE, supports a 2-dimensional transport and depletion calculation using NEWT and ORIGEN-S. So, the TRITON standalone calculations were carried out to compare the TRITON/ORIGEN-S calculations.

In order to verify the TRITON/ORIGEN-S results, the reference McCARD calculations were run with 10,000 particles per cycle and 100 active cycles after 25 inactive cycles, and full predictor-corrector option. Continuous cross-sections were processed from the ENDF/B-VII R0 library. For comparison, the HELIOS calculations were done with a coupling order of k=2 and a 47-group library based on the ENDF/B-VI R0.

2.3 Analysis Results

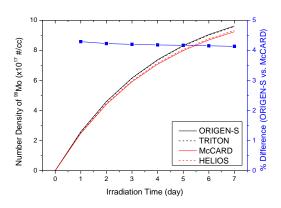


Fig. 3. Comparison of number densities of ⁹⁹Mo as a function of the irradiation time.

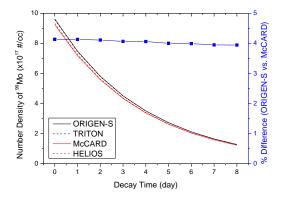


Fig. 4. Comparison of number densities of ⁹⁹Mo as a function of the decay time.

Fig. 3 and Fig. 4 show a comparison of ⁹⁹Mo number densities in a target assembly as a function of the irradiation and decay time, respectively. The results of ORIGEN-S are almost same to those of TRITON within a maximum error of 0.5%, but overestimate up to 4.3% compared to those of McCARD. Also, The HELIOS results are very close to the reference solution to within a maximum error of 1.0%. These errors are attributed to the difference of a fission product yield for ⁹⁹Mo used in each cross-section library. From the above results, a bias factor of 5% was conservatively determined for the KJRR ⁹⁹Mo production estimation.

Table I shows the ⁹⁹Mo production of a KJRR FM target assembly calculated by the ORIGEN-S code. The table also shows the results considering a bias factor of 5% and applying a recovery yield of 85% in a chemical separation process for practical evaluation. Therefore, it is expected that a KJRR FM target assembly with the fission power of 80 kW can produce ⁹⁹Mo of 374 curies.

Table I: ⁹⁹Mo Production of a KJRR FM Target Assembly

Time	PND	Activity (Ci)		
(day)	(×10 ¹⁷ #/cc)	Calculated	w/ Bias	Practical
0	0.000	0	0	
1	2.593	938	891	
2	4.606	1,667	1,584	
3	6.170	2,233	2,121	
4	7.385	2,673	2,539	
5	8.329	3,014	2,863	
6	9.062	3,280	3,116	
7 (EOI)	9.631	3,486	3,312	
8	7.486	2,709	2,574	2,188
9	5.817	2,105	2,000	1,700
10	4.519	1,636	1,554	1,321
11	3.512	1,271	1,207	1,026
12	2.728	988	938	797
13	2.120	767	729	620
14	1.647	596	566	481
15	1.280	463	440	374

* Decay Constant of ⁹⁹Mo: 2.92×10⁻⁶ sec⁻¹

3. Conclusions

Depletion and decay analyses using the ORIGEN-S, TRITON, McCARD, and HELIOS codes were carried out to estimate the fission ⁹⁹Mo production in KJRR. Since the ORIGEN-S results overestimate up to 4.3% compared to the reference McCARD solution, a bias factor of 5% was conservatively applied to the ⁹⁹Mo production. Also, a recovery yield assumed to 85% was considered for practical evaluation. Therefore, a target assembly with the fission power of 80 kW is able to produce ⁹⁹Mo of 374 curies per week. In conclusion, it is anticipated that the KJRR can yield ⁹⁹Mo production over 2,000 curies per week if six target assemblies have 480 kW.

ACKNOWLEDGEMENTS

This study has been performed under the R&D program supported by the Ministry of Science, Ict & Future Planning of Korea.

REFERENCES

[1] "Production Technologies for ⁹⁹Mo and ^{99m}Tc," IAEA-TECDOC-1065, 1999.

[2] "The Supply of Medical Radioisotopes: Review of Potential ⁹⁹Mo/^{99m}Tc Production Technologies," OECD/NEA, 2010.

[3] "SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation", ORNL/TM-2005/39, Version 6, Vols. I-III, 2009.

[4] H. J. Shim, et al., "McCARD: Monte Carlo Code for Advanced Reactor Design and Analysis," *Nucl. Eng. and Technol.*, **44**, 2, pp. 161-176, 2012.

[5] R. J. Stamml'er, et al., "HELIOS Methods," Studsvik Scandpower, 1998.