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1. Introduction 

 
The Kylov subspace method calculation of matrix 

exponentials has been used for fast, yet accurate 
depletion calculations.[1,2] Although the accuracy of 
this method depends on the dimension of the Krylov 
subspace which should be problem dependent, a 
predetermined fixed dimension is used in most existing 
codes. The use of excessively high subspace dimension 
imposes a significant calculation burden without 
increasing much the accuracy while too small subspace 
dimension can deteriorate the solution. Therefore there 
is a need for determining the proper dimension size 
which would satisfy the competing requirements of 
accuracy and speed. 

In this study, an automated Krylov subspace 
expansion is introduced in order to solve the problem of 
fixing the subspace dimension in advance. The 
background of the Krylov subspace based depletion is 
explained first, and then the results of the automated 
Krylov subspace expansion are presented below.  

 
2. Methods and Results 

 
The essence of the Krylov subspace based depletion 

method is to expand the matrix exponential involved in 
the solution of the depletion equation. The expansion is 
done in gradually increasing subspaces which can be 
optimally determined by the methods explained below.  

 
2.1 Krylov Subspace Expansion of Matrix Exponential  

 
The general solution for the depletion equation can 

be written as: 
 ( ) ( )tt t e t   AN N  (1) 
where N , A  and t  are the nuclide vector, depletion 
matrix, and the depletion time step size, respectively. 
By introducing the Krylov subspace method, the 
solution of the above equation can be written as: 
 1( )    m t

mt t e    HN V e  (2) 
where 

 
2

t  N  

1 2[ , , , ]m m V v v v  

mH   Hessenberg (upper triangular with an extra sub-

diagonal) matrix, and 

1 [1,0, ,0] .T e  

By this, the depletion matrix which has a large size 
(more precisely, dimension) is transformed into a small 
size Hessenberg matrix. The size of the Hessenberg 
matrix is determined by the dimension of the Krylov 
subspace employed. 

 
2.2 Characteristic of Hessenberg matrix elements 

 
Fig.1 shows the process of generating the new 

orthogonal basis vector from known orthogonal basis 
vectors. In this process, the effect of the new vector 

jAv


 is determined by the size of its projection to the 

new orthogonal basis vector, namely, 1,j ih  . If the new 

orthogonal component of jAv


is small, it can be 

considered negligible in constructing the next 
dimension Krylov subspace.  
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Fig. 1. Process of generating new orthogonal basis 
 
This concept can also be found in the relation 

between a depletion matrix and a Hessenberg matrix 
which can be written as:  
 1, 1

T
m m m m m m mh   AV V H v e  (3) 

where 

1,m mh   =   the last entry in the Hessenberg matrix. 

 
Here if the size of the last entry in the Hessenberg 
matrix is neglected, the following approximation can be 
possible: 
 m m mAV V H  (4) 

 
That is to say, the depletion matrix can be approximated 
without further orthogonal basis vectors. 

 
2.3 Automated Control of Krylov subspace dimension 

 
Let us examine the relation between the size of 

1,m mh   and the error of solutions versus Krylov 
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subspace dimension. Using a depletion matrix 
generated during a UO2 depletion, the results shown Fig. 
2 can be obtained which reveals that the size of 

1,m mh  is 

gradually decreasing like the solution error although it 
is fluctuating. Thus there is a possibility of controlling 
the Krylov subspace dimension using 

1,m mh  . 
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Fig. 2. Last entry of Hessenberg matrix and solution 

error versus Krylov subspace dimension 
 
In order to realize this idea, a criterion is needed to 

determinine the cut-off value of 
1,m mh  . However it is 

difficult to determine the criterion due to the fluctuation 
behavior of 

1,m mh  . To resolve this problem, the least 

squares method is introduced here. The following 
fitting function is taken 

 1
( )h m

a m b



 (5) 

Considering the decreasing behavior of 
1,m mh  with m. 

Previous 20 points are used in the least square fitting. 
As the result of the least square fitting, the fluctuation 
of 

1,m mh  can be smoothened as shown in Fig. 3. Now it 

is be possible to determine stably the termination point 
of Krylov subspace expansion, for example 10 for the 
size of 

1,m mh   in Fig. 3. 

 
Fig. 3. Least square fitting of 

1,m mh   

 
2.4 Performance Examination 
 

The automated Krylov subspace expansion was 
implemented in the nTRACER direct whole core 
calculation code[3] and a UO2-Gd pin cell 
checkerboard was solved to examine the effectiveness 

the proposed automated scheme. Fig. 4 shows the 
results of the test calculation. In the left figure of Fig. 4 
which shows the k-eff vs. burnup behavior, it is 
observed that there is essentially no difference between 
the k-eff’s of case of automated dimension and the case 
of a fixed dimension of 80. The right figure showing 
the automatically determined dimensions for each fuel 
type indicates that more dimensions are used in Gd cell 
than UO2 and those are far less than 80 for both. This 
demonstrates clearly the fact that the proper Krylov 
subspace dimension should be dependent on the 
characteristics of the problem, mainly, composition. As 
shown in Table I, the computing time for depletion can 
be significantly reduced by a factor of 3.  
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Fig. 4. Depletion result with the automated scheme 

 

Table I: Comparison of depletion calculation time, sec 

Fixed dimension 
(80) 

Automated Krylov 
subspace expansion 

30.6 9.6 
 

3. Conclusions 
 

In order to solve the problem of using predetermined 
fixed subspace dimension in the Krylov subspace based 
depletion method, the behavior of the size of the new 
subspace component was examined and an automated 
control scheme of Krylov subspace dimension was 
developed which is based on a least square fitting of the 
last entry of the Hessenberg matrix. This scheme 
determines autonomously the proper dimension 
according to the degree of problem difficulty. It was 
shown that fast and accurate subspace expansion was 
possible with the proposed scheme. This automated 
method has two advantages, namely, the autonomous 
determination of the optimum dimension according to 
the problem characteristics and the significant reduction 
in the computing time for depletion calculations. 
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