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1. Introduction 

 
The most attractive feature of the Finite Element 

Method (FEM) is geometrical freedom. If time-

dependent equation is solved with the FEM, the 

limitation of the input geometry will disappear. It has 

often been pointed out that the numerical methods 

implemented in the RFSP code are not state-of-the-art. 

Although an acceleration method such as the Coarse 

Mesh Finite Difference (CMFD) for Finite Difference 

Method (FDM) does not exist for the FEM, one should 

keep in mind that the number of time steps for the 

transient simulation is not large. The rigorous 

formulation in this study will richen the theoretical basis 

of the FEM and lead to an extension of the dynamics 

code to deal with a more complicated problem. In this 

study, the formulation for the 1-D, 1-G Time Dependent 

Neutron Diffusion Equation (TDNDE) without 

consideration of the delay neutron will first be done. A 

problem including one multiplying medium will be 

solved. Also several conclusions from a comparison 

between the numerical and analytic solutions, a 

comparison between solutions with various element 

orders, and a comparison between solutions with 

different time differencing will be made to be certain 

about the formulation and FEM solution. 

 

2. Formulation 

 

2.1 TDNDE with Constant Properties 

 

If the material properties do not change over time and 

the Fick’s law is applied, TDNDE can then be written 

as: 

 
2

2

1 ( , ) ( , )
( , ) ( , )f a

x t x t
x t D x t

v t x

 
  

  
     

  

 

where v , 
f , D , 

a
 and ( , )x t  denote the neutron 

speed (cm/sec), macroscopic nu-fission cross section 

(/cm), diffusion coefficient (cm), macroscopic 

absorption cross section (/cm) and neutron flux, 

respectively. 

 

2.2 Applying Weighted Residual Method and Galerkin 

Method 

 

The weighted residual method is used to make the 

weighted residual zero for an arbitrary weighting 

function for whole domain [1]. Using the integration by 

parts, the following equation is satisfied: 
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where the ( )w x  and  (cm) are an arbitrary 

weighting function and entire domain, respectively. 

In this step, the Galerkin method provides us with the 

form of and approximated solution and a weighting 

function as follows: 
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where N , ( )k t , ( )ku x , ( )kw x  denote the number of 

nodes, flux amplitude at the k-th node, basis function at 

the k-th node and the k-th weighting function. 

Using the above equations and albedo expressions for 

the currents, the following equation can be established: 
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where 
RE  and 

LE  denote the albedos at the right and 

left ends. 

 

2.3 Matrix Form and theta method for time 

discritization 

 

The so-called capacitance (or mass) matrix and 

stiffness matrix for N  number of weighting functions 

[2] can be defined as follows: 
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Using the theta method and an assumption of a 

constant time step size, the following equation is 

satisfied: 
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where t (sec) and   are the time step size and a 

constant respectively. 

 

2.4 Element Mapping 

 

Each component of the capacitance and stiffness 

matrix includes integration for the entire domain. This 

integration is same as the summation of an individual 

integration of the element. Also, every integrations for 

an element can be transposed using a local coordinate 

(or length coordinate in 1-D): 
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where 
EN , ( , )k i h , ( , )ˆok i h

hu , o

hJ  and 
o

N  are the number of 

elements,  local node index k for the i-th global node in 

the h-th element, the k-th basis function in local 

coordinate in the h-th element of order o, determinant of 

jacoby matrix in the h-th element of order o, and the 

element order, respectively. 

 

3. Numerical Result 

 

Because of the homogeneity of the problem, an 

analytic solution can be easily calculated. A total of 12 

cases are tested, and the period for each case is 

calculated by a linear extrapolation. The initial flux is 

assumed that constant over the domain. 

 

Table I: Problem Description 

D  a
 

f  v  

1.2 0.12 0.125 6000 

  EN  T  t  

100 10 0.0999 0.0001 

 

Table II: Input Cases Description 

0.0LE  , 0.0RE   0.5LE  , 0.5RE   

 0.0   0.5    0.0   0.5   

1oN 
 

Case 1 Case 4 1oN 
 

Case 7 Case 10 

2oN 
 

Case 2 Case 5 2oN 
 

Case 8 Case 11 

3oN 
 

Case 3 Case 6 3oN 
 

Case 9 Case 12 

 

 
Fig. 1. Power Plots for Reflective B.C. and Vacuum B.C. 

Table III: Periods for Cases 

Analytic Sol. Analytic Sol. 

0.0333 0.0436 

Case 1 Case 2 Case 3 Case 7 Case 8 Case 9 

0.0334 0.0334 0.0334 0.0495 0.0494 0.0494 

Case 4 Case 5 Case 6 Case 10 Case 11 Case 12 

0.0333 0.0333 0.0333 0.0495 0.0493 0.0943 

 

For case 7 through case 12, the period prediction is 

not good because a flat initial flux condition is used 

instead of a steady state calculation. The numerical 

results using the initial flux in a sine shape are also 

calculated. 

 

Table IV: Periods for Cases using Sine Shape Initial Flux 

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 

0.0418 0.0418 0.0418 0.0418 0.0417 0.0417 

 

 
Fig. 2. Fission Power of Case 12 with Time for a Flat Initial 

Flux 

 

4. Conclusions 

 

By investigating various cases with different values of 

albedo, theta, and the order of elements, it can be 

concluded that the finite element solution is agree well 

with the analytic solution. The higher the element order 

used, the higher the accuracy improvements are 

obtained. The Crank-Nicolson Method( 0.5  ) is better 

than the Explicit Euler Method( 0.0  ) in this problem. 

For the case in which the boundary condition is not 

reflective, the flux shape influences the leakage and that 

it is necessary to find the eigenvector by calculating the 

steady state-calculation. An extension to multi-group, 

multi-dimension, heterogeneous problems, and 

including delay neutron will be done in the near future. 
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