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1. Introduction 
 

The kinetic Monte Carlo (KMC) method can provide 
the exact dynamical evolution of a system over large 
timescale by simulating the individual transition events 
with incrementing time intervals appropriately.[1,2] 
Since Beeler’s simulation of radiation damage 
annealing [3], KMC has been widely applied for 
analyses of material irradiation, gas surface interactions, 
statistical physics, etc. In the KMC simulations, the 
accuracy of numerical result depends on the reliability 
of transition data. The sensitivity analyses are useful to 
enhance the accuracy by ordering the transition data by 
importance and quantify the uncertainty of the KMC 
output and 

The Monte Carlo (MC) perturbation methods [4] 
such as the differential operator sampling (DOS) and 
the correlated sampling have been successfully applied 
for the sensitivity calculations [5,6] in the MC particle 
transport analyses. In this paper, I derive the Neumann 
series formulation corresponding to the KMC solution 
and then the DOS formulations for the KMC 
perturbation calculations. The effectiveness of the 
developed formulations is investigated for the 
Langmuirian adsorption dynamics problem [7]. 

 
2. Derivation of KMC Perturbation Formulations 

 
2.1 Mathematical Derivation of KMC Algorithm 

 
Fichthorn and Weinberg [2] expressed a Master 

equation for KMC as 
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P(X,t) denotes the probability that a system is in state X 
at time t. k X X  means the probability per unit time that 

the system will undergo a transition from state X′ to 
state X where X and X′ are successive states of the 
system. An initial condition at t=0 can be given by 
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Then the solution of Eq. (1) with the initial condition 
of Eq. (4) can be expressed by 

 

( )

0
( , ) ( ) ( , )

tk t k t tP t e Q e S t dt      X XX X X .      (5) 

 

For the transition probability,  , defined by 
 

( , ) ( , )t k P t  XX X ,                        (6) 
 

Eq. (5) can be written as 
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By introducing the time-flight kernel, T, and the 
event kernel, C, defined by 
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Eq. (7) can be expressed as 
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The solution of Eq. (10) can be expressed by the 
Neumann series solution [8]: 
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From Eqs. (13) and (14), we can clearly see that the 
KMC algorithm is an sequence of samplings from the 
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probability distribution functions given by the time-
flight kernel of Eq. (8) and the event kernel of Eq. (9). 

 
2.2 DOS Formulation of KMC 
 

In the KMC simulations, a system parameter to be 
analyzed, R, can be expressed as 
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where r(X,t) denotes the response function to R from 
the state X at t. 

The insertion of the Neumann series solution of Eq. 
(13) into Eq. (16) gives 
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From Eq. (17), the first order sensitivity of R to a 
input parameter  can be calculated by 
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By using the sensitivity calculated by Eq. (18), the 
variation of R due to a deviation of , , can be 
estimated by 
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3. Numerical Results 
 
The simplest adsorption scenario assumes direct, 

non-activated, random, and non-dissociative adsorption 
of non-interacting particles. Therefore the particle 
adsorbs only on free adsorption sites with a probability 
of S0. This type of adsorption is called Langmuirian 
adsorption dynamics (LD) [7]. The flux of the 
impinging particles is assumed to be 1/sec for a 50×50 
lattice area. In this LD problem with S0 of 0.7, the 
change of the time-dependent adsorbed particle number, 
N(t), due to a 20% change of S0 is estimated by the 
derived DOS formulation for KMC.  

Figure 1 shows the comparison between N(t)’s 
estimated by the perturbation method and the direct 
simulations with (S0+S0) of 0.84. From the figure, we 
can see that the developed KMC perturbation method 
can remarkably well predict N(t) for the perturbed 
system. 
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Fig. 1. Comparison of the numbers of adsorbed particles 
estimated by the KMC perturbation and the direct KMC 
 

4. Conclusions 
 

I have derived the mathematical formulation which 
governs the KMC simulations. Based on the derived 
Neumann series solution, I have developed the KMC 
perturbation method which can efficiently and 
accurately estimate the changes of design parameters 
due to the transition data changes. The developed KMC 
perturbation method can be applied for the sensitivity 
and uncertainty analyses for various KMC simulations. 
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