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1. Introduction 

 

Models of complex physical systems usually involve 

epistemic uncertainty which arises from the inability to 

specify an exact value for a parameter that is assumed to 

have a constant value in the reference calculation. 

Epistemic uncertainties characterize a degree of belief 

regarding the location of the appropriate value of each 

parameter, which leads to the uncertainties on the 

responses reflecting a corresponding degree of belief 

regarding the location of the appropriate response 

values. 

The uncertainties on the input parameters/physical 

models can be reduced if experimental data are properly 

used for a Bayesian based model calibration [1]. In this 

work, the model calibration was done to reduce the 

simulation code’s input parameters’ uncertainties, and 

subsequently simulation code’s prediction uncertainties 

of design constraining responses. Each 

parameter/physical Model’s fidelity was identified as 

well to determine major sources of the modeling 

uncertainty. This analysis is important in deciding where 

additional efforts should be given to improve our 

simulation model.  

 

2. Description of the actual work 

 

Following the Bayesian approach, a posteriori 

distribution for the parameter vector p can be derived 

using the a priori distribution of the parameters and the 

likelihood function, i.e., probability distribution of the 

observables [2]. If the distributions of the parameters 

and observables are Gaussian and the sensitivity 

equations are mildly nonlinear, deterministic approach, 

based upon a first order truncated Taylor series for the 

responses, was utilized to determine the a posteriori 

mean values and standard deviations of the parameters. 

This was done using sensitivity coefficients, i.e. 

assuming the sensor responses to input parameters 

perturbations were linear. To address mild nonlinearity, 

sensitivity coefficient values were redetermined 

linearizing about the a posteriori input parameter values 

and inverse theory once again used to obtain updated a 

posteriori input parameters values. These linearization 

iterations were continued until convergence. Utilizing a 

posteriori input parameters’ values and uncertainties, a 

posteriori uncertainties of the limiting system responses 

can be determined by propagating the parameter 

uncertainties through the simulation model. This was 

done by using the Safety and Performance Analysis 

Code (SPACE) [3] developed at multiple research 

institutes to predict thermal hydraulic system responses 

of nuclear power plants. 

Note that for certain transients, nonlinear and 

discontinuous behaviors can be observed. The 

deterministic approach is inappropriate to treat this 

behavior due to the nonlinear relationship between the 

system responses and the parameters, hence the 

potential for a non-Gaussian nature of the a posteriori 

distributions. This provides motivation that the 

transients that generate nonlinear system responses be 

differentiated from those that behave relatively linearly. 

To address the nonlinear responses in determining the a 

posteriori distributions of the parameters, Markov Chain 

Monte Carlo (MCMC) simulation was conducted, which 

seeks to determine the steady state Markov distribution 

by generating Markov chains which coincide with the 

target distribution, i.e. the a posteriori distribution of the 

parameters [4]. MCMC has proven effective for 

nonlinear response problems with multiple parameters 

to adjust. However this method is not applicable if the 

simulation model requires substantial CPU time to 

execute due to the computational burden. 

 

3. Result 

 

Employing Bennett’s heated tube test results [5] 

and Becker’s post Critical Heat Flux (CHF) 

experimental data [6], including the introduction of 

sensor errors consistent with the sensor signals known 

uncertainties, a posteriori distributions of the parameters 

were determined for the linear system. It was shown as 

expected that a larger reduction in uncertainty can be 

achieved for the parameters if data from multiple 

experiments are properly utilized for the analysis. The 

best estimated mean value and standard deviation, for 

example, for the critical heat flux are 0.846 and 0.0158, 

respectively, while its a priori mean value and standard 

deviation are 1.0 and 0.35, respectively.  

The MCMC simulation was also completed for the 

Bennett and Becker experimental data. Figures 1 and 2 

present the a posteriori distributions of the selected 

parameters computed using about 3,500 MCMC 

samples. Uncertainties are observed to be reduced, but 

non-Gaussian distributions occur due to the nonlinearity 

of the system. Figure 1 shows the uncertainty on the 

interfacial heat transfer coefficient in inverted slug flow 

was not reduced very much by the model calibration 
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since the parameter does not affect very much the 

system. In this case the experiments performed do not 

provide enough information to determine the degree of 

belief regarding the location of the parameter. Figure 2 

however, shows the uncertainty on the critical heat flux 

model was reduced substantially since the parameter 

plays important role in achieving better agreement 

between measured and predicted sensor response values.   
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Fig 1. A priori and a posteriori distributions of the interfacial 

heat transfer coefficient in inverted slug flow 
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Fig 2. A priori and a posteriori distributions of the critical 

heat flux value 

 
4. Conclusion 

 

The goal of this work is to develop higher fidelity 

model by completing experiments and doing uncertainty 

quantification. Thermal hydraulic parameters were 

adjusted for both mildly nonlinear and highly nonlinear 

systems, and their a posteriori parameter uncertainties 

were propagated through the simulation model to 

predict a posteriori uncertainties of the key system 

attributes. To solve both highly nonlinear as well as 

mildly nonlinear problem, both deterministic and 

probabilistic methods were used to complete uncertainty 

quantification. To accomplish this, the Bayesian 

approach modified by regularization is used for the 

mildly nonlinear problem to incorporate available 

information in quantifying uncertainties. The a priori 

information considered are the parameters and the 

experimental data together with their uncertainties. The 

results indicate that substantial reductions in 

uncertainties on the system responses can be achieved 

using experimental data to obtain a posteriori input 

parameters’ uncertainty distributions. The MCMC 

method was used for the highly nonlinear transient. Due 

to the computational burden, this method would not be 

applicable if there are many parameters, but it can 

provide the best solution since the algorithm does not 

approximate the responses while the deterministic 

approach assumes linearity of the responses with regard 

to dependencies on the parameters. Using MCMC non-

Gaussian a posteriori distributions of the parameters 

with reduced uncertainties were obtained due to the 

nonlinearity of the system sensitivity equations.  
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