
Transactions of the Korean Nuclear Society Spring Meeting 
Gwangju, Korea, May  30-31, 2013 

 

 
 

Volume-Averaged Momentum Equations and Wall Drag for Disperse Phase 
 

Byoung Jae Kim a, Jungwoo Kim b, Kyung Doo Kim a 
aKorea Atomic Energy Research Institute, Dukjing-dong, Yuseong-gu, Daejeon 

bSeoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 
*Corresponding author: kdkim@kaeri.re.kr 

 
1. Introduction 

 
The state-of-the-art CHATHARE, TRACE, and 

COBRA codes do not impose any wall drag on the 
disperse phase based on observation that most 
droplet/bubbles do not touch the wall. RELAP5 code 
considers the wall drag for the dispersed phase based on 
the wetted fraction concept. The hydrodynamic 
behavior of the disperse phase is of importance in the 
nuclear safety analysis. In particular, the droplet flow 
rate in horizontal hot legs is closely associated with 
steam binding and stream generator u-tubes. Despite its 
importance, it is still questionable how to impose the 
wall drag on the disperse phase. 

The two-fluid equations are formulated based on the 
interpenetrating continua concept that two phase fluids 
occupy simultaneously the same space, which are 
obtained by applying the time and/or space averaging 
process to the local instantaneous conservation 
equations (Drew 1983, Ransom 1994, Ishii 2011). Each 
term in the averaged equations has a physical meaning 
or contribution, but it must be interpreted with care. The 
averaged equations sometimes fail to explain physical 
phenomena. For example, Podowski (2009) indicated 
that ignoring the wall drag on bubbles causes the bubble 
velocity to be faster than the water velocity for steady 
and horizontal bubbly flow. He stated that the total wall 
friction should be apportioned in proportion to the each 
phase volume fraction without explanation of any 
physical reasons. Moreover, the discussion was made 
centering around fully-developed flow in a straight pipe. 

In this paper, volume-average momentum equations 
are newly derived for disperse flow. The wall drag for 
the disperse phase is discussed. 

 
2. Equation of Particle Motion 

 
To gain insight into hydrodynamics for the disperse 

phase, we start with the equation of a single particle 
motion. Maxey and Riley (1983) derived the equation 
of a small particle motion under non-uniform and 
unsteady flows at low Reynolds numbers, 
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where the subscript d and c stand for the disperse phase 
and the continuous phase, respectively. The second 
term on RHS (right hand side) accounts for the force by 
stresses due to undisturbed (or ambient) continuous 
phase. In Eq. 1, 

cv
  is undisturbed continuous phase 

velocity. In other words, it is the continuous phase 
velocity evaluated at the particle center in the 
hypothetical situation in which the particle were absent. 
The last three terms on RHS are the hydrodynamic 
forces (drag, added mass, and history forces) by the 
disturbed flow stress, which are functions of the particle 
velocity and disturbed continuous phase velocity. From 
Eq. 1, it can be readily shown that a bubble is faster 
than water in a contraction and viceversa in an 
expansion. It can also be explained that a droplet is 
slower than gas in a contraction and viceversa in an 
expansion. Although the equation was developed for a 
solid particle, the basic concept can be utilized for a 
fluid particle. 

 
3. Volume-Averaged Momentum Equation 

 
3.1 Multi-Dimensional Equation 

 
In this study, a “particle” means a fluid particle such 

as droplet and bubble. Detailed averaging steps are not 
described in this paper. Important procedures and 
assumptions are summarized below. 
 The surface tension effect is not considered, nor is 

the phase change. In this case, the interface jump 
condition is greatly simplified and the two phasic 
interface drags sum to zero. 
 The continuous phase stress (

cσ ) are divided into 

the undisturbed stress ( 0
cσ ) and the disturbed stress (

cσ ) 

by particles. 
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 In averaging context,  σσc
0  is reasonably 

assumed. Here, σ may be interpreted as the stress of the 
mixture. As a result, the following equations are 
formulated. 
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where 
iF  

accounts for the hydrodynamic forces. Note 

the second terms in Eqs. 3 and 4. The volume fractions 
are outside of the divergence operator. This feature 
differs from the standard multi-fluid equation in which 
the volume fractions are inside the divergence operator. 
Equations 3 and 4, however, are  consistent with the 
equations developed for disperse flow by Sirignano 
(2005), Moraga et al. (2006), Prosperetti (2009), and 
Crowe et al. (2011). The first terms on RHSs in Eqs. 3 
and 4 correspond to the second term in RHS of Eq.1. 
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