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1. Introduction

The state-of-the-art CHATHARE, TRACE, and
COBRA codes do not impose any wall drag on the
disperse phase based on observation that most
droplet/bubbles do not touch the wall. RELAPS code
considers the wall drag for the dispersed phase based on
the wetted fraction concept. The hydrodynamic
behavior of the disperse phase is of importance in the
nuclear safety analysis. In particular, the droplet flow
rate in horizontal hot legs is closely associated with
steam binding and stream generator u-tubes. Despite its
importance, it is still questionable how to impose the
wall drag on the disperse phase.

The two-fluid equations are formulated based on the
interpenetrating continua concept that two phase fluids
occupy simultaneously the same space, which are
obtained by applying the time and/or space averaging
process to the local instantaneous conservation
equations (Drew 1983, Ransom 1994, Ishii 2011). Each
term in the averaged equations has a physical meaning
or contribution, but it must be interpreted with care. The
averaged equations sometimes fail to explain physical
phenomena. For example, Podowski (2009) indicated
that ignoring the wall drag on bubbles causes the bubble
velocity to be faster than the water velocity for steady
and horizontal bubbly flow. He stated that the total wall
friction should be apportioned in proportion to the each
phase volume fraction without explanation of any
physical reasons. Moreover, the discussion was made

centering around fully-developed flow in a straight pipe.

In this paper, volume-average momentum equations
are newly derived for disperse flow. The wall drag for
the disperse phase is discussed.

2. Equation of Particle Motion

To gain insight into hydrodynamics for the disperse
phase, we start with the equation of a single particle
motion. Maxey and Riley (1983) derived the equation
of a small particle motion under non-uniform and
unsteady flows at low Reynolds numbers,
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where the subscript d and ¢ stand for the disperse phase
and the continuous phase, respectively. The second
term on RHS (right hand side) accounts for the force by
stresses due to undisturbed (or ambient) continuous
phase. In Eq. 1, g, is undisturbed continuous phase

velocity. In other words, it is the continuous phase
velocity evaluated at the particle center in the
hypothetical situation in which the particle were absent.
The last three terms on RHS are the hydrodynamic
forces (drag, added mass, and history forces) by the
disturbed flow stress, which are functions of the particle
velocity and disturbed continuous phase velocity. From
Eqg. 1, it can be readily shown that a bubble is faster
than water in a contraction and viceversa in an
expansion. It can also be explained that a droplet is
slower than gas in a contraction and viceversa in an
expansion. Although the equation was developed for a
solid particle, the basic concept can be utilized for a
fluid particle.

3. Volume-Averaged Momentum Equation
3.1 Multi-Dimensional Equation

In this study, a “particle” means a fluid particle such
as droplet and bubble. Detailed averaging steps are not
described in this paper. Important procedures and
assumptions are summarized below.

= The surface tension effect is not considered, nor is
the phase change. In this case, the interface jump
condition is greatly simplified and the two phasic
interface drags sum to zero.

= The continuous phase stress (¢,) are divided into

the undisturbed stress (6?) and the disturbed stress (o)

by particles.
0, =0, +6, =(-plI+7)+(-pll+7.) @
= In averaging context, v.(g%)~V-(o) is reasonably
assumed. Here, o may be interpreted as the stress of the
mixture. As a result, the following equations are
formulated.
RHS,; =-a,V(p) +a,V (1) + F; + a,p,g ®)
RHS, =-a,V{(p)+a,V-(t)-F. +a,p,§ 4)
where F, accounts for the hydrodynamic forces. Note

the second terms in Egs. 3 and 4. The volume fractions
are outside of the divergence operator. This feature
differs from the standard multi-fluid equation in which
the volume fractions are inside the divergence operator.
Equations 3 and 4, however, are consistent with the
equations developed for disperse flow by Sirignano
(2005), Moraga et al. (2006), Prosperetti (2009), and
Crowe et al. (2011). The first terms on RHSs in Egs. 3
and 4 correspond to the second term in RHS of Eq.1.
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Let us look at the standard two-fluid equation for
phase k without gravity.

RHS, = —V(a,(p), )+ V-(a,(t.), )+ M, (5)

M, = My —(—(pe); +(T); Ve, (6)
M, is the momentum transfer on phase k. M is

refered to as the generalized interface force, which
corresponds to F, in Egs. 3and 4. Equation 5 can be

rewritten by
RHS, = -a, V(D) +V - (a (1) )+ M} )

+ (P —(PIVa, — (1) Va,

Ishii and Hibiki (2011) and Enwald (1996) neglected
the last term for disperse flow. Also, Drew (1983) does
not consider the last term. Consequently, if both the
average pressure and viscous stress in the bulk fluid and
at the interface are approximately the same, the standard
momentum equation is given by

RHS, =—a,V(p), +V-(a,(t,), )+ M (8)

3.2 One-Dimensional Equation

One can obtain the one-dimensional equations in a
similar manner.

RHS, = -a,d(p)l ox +agwall ;. + F; +a,p,g (9
RHS, =-a,&p)ox +a,wall ;. - F, +a,p,g (10
In the above, wall e is the total pressure drop by wall

friction. This result indicates that the phasic wall drag is
proportional to the phasic volume fraction.

4. Application to SPACE code

Horizontal disperse flows were simulated in a
straight pipe, contraction, and expansion, respectively.
The test was performed at the 10 bar saturation
condition. The pipe diameter is 2cm and the length is
5.94m.

Figures 1 and 2 show the velocity variations along
downstream for bubbly flow in the expansion. In Fig.1,
no wall drag is imposed on the bubble, however in Fig.2,
wall drag is imposed following Egs. 8 and 10. The flow
area is increased by 25% at 0.5m. At the inlet, the
bubble velocity and water velocity are set to the same
value, and the void fraction is 0.05. Ideally, in the
section x=0~0.5m, the bubble and water velocities must
be the same. As seen, this behavior is observed in Fig. 2.
However, the bubble velocity is shown to be
considerably faster than the water velocity in Fig. 1.
Moreover, the bubble is slower than water in some
distance from x=0.5m, after that, it becomes faster than
water again in far downstream. On the other hand, in
Fig. 2, water is faster in the expansion region and two
velocities become close as going downstream, which is
physically correct. This behavior can be explained by
Egs. 9 and 10. We performed direct numerical
simulations for a single fluid particle in a pipe,
contraction, and expansion, respectively. Though the
results are provided in this paper, the velocity behaviors
are qualitatively similar to those in Fig. 2.
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Fig. 1. No wall drag is imposed on the bubble phase
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Fig. 2. Wall drag is imposed on bubble by Egs. 8 and 9

3. Conclusions
Volume-averaged momentum equations have been
formulated for disperse flow. The proposed equations
show more physical results.
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