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1. Introduction 
 
KAERI has been developing the simulator for the 

JRTR (Jordan Research & Training Reactor) based on 
the best-estimate code, MARS for the purpose of 
operator training. The JRTR simulator is also used as a 
dynamic test bed (DTB) to validate the control logics in 
RRS (reactor regulating system), which is under 
development. In the previous study [1], we have 
developed the PCS (primary coolant system) model of 
JRTR in batch mode. In this study, the MARS code has 
been integrated into simulator environment. To be used 
as a DTB for validating the RRS, a reactor kinetics 
model is an essential part. Althrough the MARS code 
has a point kinetics model, it lacks the xenon reactivity 
model. Therefore, we have also developed the iodine-
xenon transient model for the DTB test. 

 
2. Model Development 

 
2.1 JRTR PCS Model 
 
Development of the JRTR primary cooling system 

(PCS) model is described in the previous study [1]. It 
consists of the reactor core and the related pool cooling 
systems. Fig. 1 shows the overall layout of the MARS 
model for the JRTR. The red symbols in the figure 
represent the interface time-dependent volumes between 
the MARS and 3KeyMaster [2]. Minimum connnections 
between two modules have been completed until now 
because most of the interfaces are not required in the 
DTB test. 
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Fig. 1. MARS nodalization for JRTR 

 
2.2 MARS-3KeyMaster Interface Functions 
 

The interface functions between the MARS and 
3KeyMaster are required to simulate plant operation. 
With ViSA [3] interface feature, it is possible to transfer 

the variables to the other side. The general concept of 
variable interface between the MARS and 3KeyMaster 
is shown in Fig. 2. 
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Fig. 2. Variable interface function 

 
2.3 Point Kinetics Model 
 

The delayed neutron data is summarized in Table I. 
The number of the delayed neutron groups in the MARS 
code is fixed to 6. Therefore, we used delayed neutron 
data only and neglected the photoneutron data. The 
effective delayed neutron fraction, effb  is 0.00685. 
 

Table I: Decay constant and yield of delayed neutron 
Group 1 2 3 4 5 6 

il  (1/s) 0.0125 0.0317 0.1090 0.3170 1.350 8.730 

ig  (%) 3.2 16.8 16.4 45.6 13.3 4.7 
 

The reactivity model of the MARS is as follows: 
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( ) ( ), , , o B si cir r r t r t  and ( )fbr t are an initial reactivity, bias 

reactivity, input table reactivity, control variable 
reactivity and feedback reactivity, respectively. As 
shown in Eq. (1), there is no explicit xenon posion effect 
in MARS reactivity model. Therefore, xenon transient 
model has been incorporated into the MARS code. An 
iodine-xenon kinetics model is as follows [4]: 
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ˆ ˆ ˆ, , , , , , X I e XI X N l l l g  and Ig  are normalized iodine, 

xenon and neutron population, decay constant of iodine 
and xenon, effective decay constant of xenon, yield 
fraction of xenon and iodine, respectively. Eq. (2) is 
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solved by the 2nd order Runge-Kutta method. The values 
of all constants in Eq. (2) are based on the reference [4]. 

Rod worth is the most important factor in the DTB 
test because of its large reactivity. There are four CARs 
(control absorber rods) in the JRTR. The CAR worth is 
simulated by a control variable reactivity ( cir ) in Eq. (1). 
Once the RRS control logics in 3KeyMaster determine 
each CAR position, MARS will calculate the each CAR 
worth by using a tabular relationship between position 
and worth as shown in Fig. 3. Currently, critical rod 
position is assumed to be 430 mm from the bottom of 
the core. 
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Fig. 3 CAR position vs. intergral CAR worth  

 
3. Simulation Results 

 
To verify the capability of the DTB model, two kinds 

of tests were conducted. The first one is a rod insertion 
test without xenon to verify the CAR worth model and 
the second one is a reactor trip test with the equilibrium 
xenon to verify the iodine-xenon transient model. 

In a rod insertion test, the single CAR is inserted into 
the core slightly (-1 mm) to change the CAR worth (-
0.011$). In a reactor trip test, all CARs are fully inserted 
into the core instantly to decrease fission power to 
almost zero. 

Fig. 4 shows the result of a rod insertion test. The 
fission power starts to decrease promptly as soon as a 
CAR is inserted into core and decreases continuously 
until the feedback reactivities compensate the CAR 
worth. 

The normalized xenon and iodine concentrations 
during a reactor trip test are plotted in Fig. 5. As fission 
power decreases due to CAR full insertion, xenon 
concentration increases whereas iodine concentraion 
decreases. The maximum xenon concentration occurs 
around 10 hours after trip and its maximum value is 
almost three times of the equilibrium concentration. This 
result is consistent with the theorical value. After 10 
hours, the xenon concen-tration decreases graudually. 

Fig. 6 shows the comparison of a real time and a 
computational time during a reactor trip test. As shown 
in figure, two times are identical until the end of a 
simulation. Therefore, the DTB model can satisfy the 
basic requirement of the real-time calculation for the 
simulator. 

 
4. Conclusions 

 
A point kinetics model for the DTB of JRTR has 

been developed and merged into the simulator 
environment. Through several verification tests, it is 
found that the iodine-xenon transient model has been 
incorporated into the MARS successfully and the CAR 
worth model also works in proper way. In addition, the 
capability of real-time calculation was also verified in 
these tests. Consequently, it is concluded that the 
developed PCS model with modified point kinetics can 
be used in the full-scope simulator for the JRTR if all 
the interfaces are connected to 3KeyMaster. 

 

 
Fig. 4 CAR worth (white), total reactivity (yellow) and fission 

power (green) 
 

 
Fig. 5 Iodine (green) and xenon (white) concentration 

 

 
Fig. 6 Real (green) and computational (white) time  
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