Development of the Continuous Casting Technology for Fabrication of Depleted Uranium Tube

Abstract

In the irradiation test of the U-Mo dispersed nuclear fuel that is used as nuclear fuels for research reactors, it was recognized that the swelling due to reaction between U-Mo particle and Al matrix caused some failures of the fuel claddings. The development of new style nuclear fuel that could minimize the reaction between U-Mo particles and Al matrix was needed. Tube style nuclear fuel was judged to be suitable as new style nuclear fuel. We are targeting to make U-Mo tube of diameter 10mm, thinner than 1mm thick, because temperature distribution of tube style nuclear fuel will be expected to have a good performance. We introduced the computer simulation to predict the cooling behavior of the tube by flow analysis and

solidification analysis for the continuous casting. In this research, we preliminarily have tried to make tube using the copper and then depleted uranium before we make U-Mo tube style nuclear fuel by continuous casting method. As a result of the experiment, we succeeded to make copper and depleted uranium tube of diameter 10mm, thickness 1mm, and diameter 10mm, thickness 2mm respectively.

1. (6.0 g-U/cc) U-Mo 가 • U-Mo Al Al 가 가 U-Mo 1 U-Mo Al U-Mo , , Al U-Mo 10 mm, 1 mm 10 mm, 1 mm U-Mo . [1]. Cu (DU, Depleted Uranium) U-Mo . Cu DU U-Mo AnyCasting , Solid modeling 2

10mm, 1mm U-Mo

2. 2-1.

> 3 가 3kHz, 75kW 가 , , . . 가 가 가 가 graphite felt . R.P(Rotary Pump), B.P(Booster Pump), D.P(Diffusion Pump) 10⁻⁶torr •

•

2-2.

가 (Mandrel) [2]. . Cu 4 , DU 5 Si₃N₄-BN DU DU 5 DU . Si₃N₄-BN 가 5 4 가 6 Cu , DU (Tantalum) DU . •

2-3.

(Cu DU) 가 R.P, B.P, D.P 가 10⁻²torr 가 3 kHz 가 300 $10 \ kW$ • 20 kW 가 . , 1 Ar 가 (99.9%) . Ar 가 . High-Low •

.

10

1. Cu

Conditions Samples		Temperature			Cooling		Withdrawal			Ar gas		
		Pyrometer ()	TC1 ()	TC2 ()	TC3 ()	Pressure of Water (kgf)	Quantity of Water (lpm)	Length (mm)	Dwell time (sec)	Avg.rate (mm/min)		2 nd gas (lpm)
Cu-01	OD : 20mm T : 2mm	1330	1190	1091	731	4.5	1	1	2	20	20	0
Cu-02	OD : 10mm T : 2mm	1334	1192	1069	743	4	0.8	1	2	20	20	10
Cu-03	OD : 10mm T : 1.5mm	1359	1191	1099	790	4.5	0.8	1	2	20	20	0
Cu-04	OD : 10mm T : 1mm	-	1198	1045	753	4.5	0.8	1	2	20	20	0

3-2. Cu

가		, 1	가	
		-	가	7
	Cu			
	10mm			. Cu-02, Cu-03,
Cu-4	-	가	2.1~2.3mm, 1.6~1.8	mm, 1.1~1.3mm
가				

3-3. DU

DU

2. DU

\searrow	Conditions Temperature						ling	Withdrawal			Ar gas	
	Samples	Pyrometer ()	TC1 ()	TC2 ()	TC3 ()	Pressure of Water (kgf)	Quantity of Water (lpm)	Length (mm)	Dwell time (sec)	Avg.rate (mm/min)	1 st gas (lpm)	2 nd gas (lpm)
DU-0	0D : 10mm T : 2mm	1304	1201	-	772	4.5	1	1	2	20	30	0

2

.

[2] J.M. Rodriguez, A. Esteva, S. Meza "A note on the control of the solidification front in the continuous casting of copper tubes" Journal of materials Processing Technology 96 (1999) 42-47

(a) Concept 1

(b) Concept 2

1.

2.

Solid Modeling

3.

4. Cu

5. DU

8.

DU