2003

K- LOCA

Oxidation Behaviors of K-Cladding Tubes in LOCA Temperatures

Abstract

High-temperature oxidation behaviors of advanced cladding tubes (K2, K3, and K6) were elucidated in the temperature ranges of 700 to 1200°C under steam supplying condition to simulate LOCA state oxidation, using a TG (thermo-gravity) method. The weight gain of higher Nb-contained claddings (K3 and K6) was less than that of lower Nb-contained cladding (K2). It was showed in this study that oxidation rate was not governed by the parabolic rate in the experimental temperature ranges; i.e. the indices of the oxidation rate increased as the experimental temperature increased and then decreased with increasing the temperature. The oxidation rate constants of advanced cladding tubes were lower than the rate by Baker-Just relation. So, it was expected that the LOCA integrity of the advanced cladding tubes was superior to that of conventional Zircaloy-4 cladding tube.

1.

/

가

1)

,

Halden 2) (LOCA, loss of coolant accident) Zircaloy 1960 가 Zircaloy-4 Nb . 3) 가 Zircaloy-4 가 Zircaloy-4 4,5) 가 가 . / (ECCS) 가 6) 가 가 가 가 7) Nb LOCA (700~1200°C) 가 , 가 . 2. , 3 (K2, K3, K6) 1 Shimadzutk . . 가 TGA 0.001mg 가 가 . (99.9999%) Ar 가 가 1

.

,

2/12

	가					
			8 mm			
		SiC 1200		, 5% H	IF, 45% HNG	D ₃ , 50%
H ₂ 0 フト	가					
3.						
	LOCA					가
			1/2	(parabolic	rate)
가	가가	8,9,10)	,			
	_, _,		7}		parabol	ic rate
	가가					
·	\٨/2	² – K t				(1)
. W	Z	r r		가	(ma/dm²)	(')
, Κ _ρ	- 가 parabolic rat	te	가	·	(mg	²/dm ⁴ -
sec)	. t	(sec)				
700~1200°C		가	parabolic	rate		
. 1	TGA					,
(a) K2 ,	(b) K3 ,	(c) K6				
	가			1000°C		
가		. Nb		가	K3	K6
가			, K6	K3 7	ŀ	
가	. Nb 0.2%	가 K2	1050	°C		
, 2000			가			
	. 1050°C					

가

.

,

.

가	Nb		가					가	Nb
	가					Nb	가가		
							가	(mg/c	dm²)
			TGA						
			., 1		TGA		7	' ŀ	
		가	(W _{oxygen absorbe}	d)					
				Zr + 2H ₂	$_{2}O \rightarrow ZrO_{2} -$	+ 2H₂			(2)
				Zr 1 mole		ZrO ₂ 1 m	ole		
			가		Zr		가		가 ,
W _{zr r}	eacted								
				W _{zr reacted}	i = 2.857 x	W _{oxygen} absorbe	ed		(3)
	(1)		가 parab	olic rate		가	가		
					가 parabo	olic rate			
				(1)					
				W ⁿ zr reacte	$_{ed} = K_n t$				(4)
	, W ₂	zr reacted	I	n		Zr			
가		가	(mg/dm²)	,	K _n	가	n		
((mg	g/dm²)	ⁿ -sec))		t	(sec)			
	2		n		curve fittir	ng		,	fitting
			(у	$= a x^{b}$)		가	. 700°C		
		가			fitting			99%	
			,	1100°C			fitti	ng	
		3		가	K2	1050°C	;		fitting
			7	ŀ	200	0	fitting		
Fittir	ng		가		2000				가
	,			2.82 (=1/k	o, b=0.35)	parabolic	rate (n=2)		
		cub	ic rate (n=3)	가			K	2, K3,	K6
					, n	4, 5, 6		•	
	4	K2		, 700°C	;		2.3		
가	가		800°C			1000°C			
	2.9		가		가	1000°C			

4/12

가 1050°C 2.83 • 1100°C 2.26 . 5 6 K3 K6 (n) 4 K2 가 가 가 가 1050°C 가 가 . K3 2.92 가 가 2.18 950°C 3.2 . K6 1000°C 가 가 3.24 가 . 가 . 가 , 600°C Zr (anion deficient) ZrO_2 (solid-state) . , $K_n = A \exp(-Q / RT)$ (5) . , , ((mg/dm²)ⁿ-sec A = Τ= , K R = , 1.987 cal/mol-K Q = , cal/mol Baker-Just ⁷⁾ 7 , A , Q K2, K3, K6 Baker-Just 7 8 . LOCA Baker-Just . 700~1200°C , parabolic rate Baker-Just . LOCA Nb 가 가 Zircaloy-4 .

Table 1 Chemical composition of KAERI advanced cladding tubes

			(wt.%)
	Nb	Sn	TRM
K2	0.2	1.1	0.55
K3	1.5	0.4	0.2
K6	1.0	-	1.0

(*) TRM: Transition metals

Fig. 1 Oxidation behaviors of advanced cladding tubes; (a) K2, (b) K3, (c) K6

Fig. 2 Fitted curves of K3 cladding tube; (a) 700° C, (b) 1050° C, (c) 1200° C

Fig. 3 Fitted curves of K2 cladding tube at 1050°C

Fig. 4 Oxidation rate constant of K2 cladding tube

Fig. 5 Oxidation rate constant of K3 cladding tube

Fig. 6 Oxidation rate constant of K6 cladding tube

Fig. 7 Oxidation rate parameters of advanced cladding tubes; (a) A, (b) Q in $K_n = A \exp(-Q / RT)$

Fig. 8 Rate constant of advanced cladding tubes