Design Modification and Stress Analysis of Bottom Structure for the Instrumented Capsule

Abstract

The bottom structure of the instrumented capsule, which is used for the irradiation test in the HANARO incore, plays an important role to support the capsule main structure within the hexagonal flow tube. This paper is described the design modification and stress analysis results to obtain the structural integrity of bottom structure for the instrumented capsule. The capsule's bottom guide structure consisted of three guide pins before, but it is modified as one block structure to obtain an efficient flow of coolant water and a stabilized shape structurally. The structural integrity of the bottom structure is estimated by the stress calculation of components such as welding parts, bolts and neck parts of the rod tip due to the force applied by handling tool. The tensile and shear stresses are calculated by using a mechanical formulas, and a finite element model development is planned to be performed for more complex assembly of the capsule bottom structure.

2003

(instru	mented capsule)	(HANARO)					
,	가	, [1,2].	,	, ,	(bottom		
guide structure)	(mainbody)	(protecti	on tube)		(test		
hole)	(receptable)						
	3	(handling	tool)				
가	· , 가 ·		, 4.8mm 3 フト	(guide pin)	120°		
,	· · · · · · · · · · · · · · · · · · ·						
[3-5].				7	ŀ		
,	7 (mock-	ŀ,3 -up)					
,	71		,				
1) Rod Tip Neck	21	, 3)	가	, 2)	6mm		
가 .					가		
가		가		[6,7],			
3	I-DEAS[8]						
2.							
		71					
	, 7ŀ	1	71-				
,	Fig. 1		(97M-01K))			

가

(b) 98M-02K (Fi

(c) $00M-03K$	(02M-05U)
---------------	-----------

g.	1	Shape	of the	bottom	structure
----	---	-------	--------	--------	-----------

	Fig.	1

,				Fig. 2	3
		,		가	
(200 KPa)		,		

Rod Tip Neck

Fig. 1 Fig. 2 (1.2 kgf/mm \rightarrow 1.0 kgf/mm), End Rod Tip Neck (6.6mm → 6.8mm), (EB welding \rightarrow TIG welding), Rod Tip (Zircaloy-4 \rightarrow Cap Rod Tip bead STS 304) .

Fig. 2 Shape of the modified bottom structure

Fig. 3 Section view of the modified bottom structure

3.

,

,

Type 304

, Table 1

122 °F

Table 1. Material properties [9] of type 304 stainless steel (122 °F)

Young's	Density	Poisson's	Yield	UTS	Allowable	Elongation
Modulus (GPa)	(kg/m ³)	Ratio	Strength (MPa)	(MPa)	Stress* (MPa)	(%)
193	7900	0.3	205	515	123	60

* Allowable stress = $0.6 \times$ Yield Strength

Fig. 4 Schematic view of the force and the moment applied by handling tool

$$\tau_{\rm max} = \frac{Td/2}{J} \tag{2}$$

	J		2	(polar	moment of inerti	a)					
					$J = \frac{\pi d^4}{32}$						(3)
	(1)	(3)	(2)		,			((τ_a)		
	Q			,							
					$Q = \frac{\pi d^3 \tau_a}{16b}$						(4)
						60%		,	74MPa		(4)
					Q=45.7N	,	가				
91.4N						2					
		Rod Tip		Neck		가				2	
		71				가					
		~1		·							
3-2.											
	1.0 k	gf/mm				Ι	Rod Tip	Bottom	End Cap		
	, Rod Ti	p End	Cap		45°		(groove	TIG wel	d)	. Roc	l Tip

			Fig. 5	,	
		Table 2			
		가	(P)		
가	(F)				

Table 2. Description and value of the welding part used in the stress calculation

Notation	Description	Value		
Р	Tension	Unknown		
Т	Twisting moment	$T = F \times r$		
r	Radius of the rod tip	4 mm		
h1, h2	Welding size	2 mm, 2 mm		
α1, α2	Groove angle	45°, 45°		
a1, a2	Throat thickness	$a1=h1 \times \cos \alpha 1$, $a2=h2 \times \cos \alpha 2$		

Fig. 5 Schematic view of the welding part and the applied force

(1)

Fig. 5 Table 2 Rod Tip (P) (welding size) (throat thickness) h a Р , , (A) $A = 2\pi r(a1 + a2) = 2\pi r \times 0.707 \times (h1 + h2)$ (5) (σ_t) (σ_a) $\sigma_t = \sigma_a = \frac{P}{A}$ (6) 가 (η) (v_1) (v_{2}) [7]. $\sigma_a = \eta \sigma_a' = v_1 v_2 \sigma_a'$ (7) , $\sigma_{\scriptscriptstyle a}'$ End Cap Rod Tip 가 Type 304 123 MPa , 0.75 [7]. 1.0 , (8) (7) (6) $P = A\sigma_a = A\eta\sigma'_a = Av_1v_2\sigma'_a$ (8) (8) Rod Tip 가 P=6.56 kN

(2)

(T)가 Rod Tip

,

F =

T/r						($ au_t$)	
(τ_a)	,							
			τ_{t}	$= au_a = rac{F}{A}$				(9)
		(7)	v_1	= 0.65	[7],		σ_a = 80 MPa	
	(9)			60%	$\tau_a = 0.6\sigma_a =$	48 MPa		•
	(groove angle)	45°					가	,
		(5)	(9)					
		$F = \tau_a A =$	$48 \times 10^6 \times$	${2\pi r \times 0.7}$	$07 \times (h1 + h2)$	= 3.41 k	N	(10)
	가						F=3.41kN	
		Ro	d Tip	20.5mm	가 D	가	End Cap	
				가.				
3-3.	6mm							

			Fig. 6					6
M6	,						,	
				가		Rod Tip	End Cap	
	,	Rod Tip			フ	ŀ		

Fig. 6 Schematic view of the bolting part

Rod Tip T

 $T = \frac{\pi}{16} d^3 \tau_s \tag{11}$

d (8mm) , au_s . n T'

$$T' = \frac{\pi}{4} \delta^2 \tau_b nR \tag{12}$$

, τ_b R=24mm . 7 Rod Tip $T' \ge T$

$$\frac{\pi}{16}d^3\tau_s = \frac{\pi}{4}\delta^2\tau_b nR\tag{13}$$

 $(0.6 \times 123 = 74 \text{MPa})$, (13)

•

,

, R

$$\delta = 0.5 \sqrt{\frac{d^3}{nR}} = 0.94 \text{ mm}$$
 (14)
3 2.8mm

.

가, 6mm

3-4. 3D

Fig. 7 Geometrical shape model of the bottom structure using an I-DEAS

, ANSYS I-DEAS , •

4.

(1) 3

(2) 6.8mm Rod Tip Neck 가 91.4N 가 . , 가 P=6.56 kN (3) Rod Tip End Cap 가 End Cap Rod Tip F=3.41kN . 20.5mm가 D

3 (4) 2.8mm 가, 6mm

.

(5) 3 ,

.

1.		, 199	6, "		-	",	KAERI/RR-1760/96,
2.		, 200	13, "		-		," KAERI/RR-2360/03,
3.	,	,	,	,	,	, 2000, "	, ,
	'2000						
4.	,	1999, "			Guide Pin	," HAN-IC	-CR-99-013, .
5.	,	2000, "			Guide Pin	," HAN-IC-CR-	
6.	S.H. Crandall	, N.C. D	ahl and '	T.J. Lard	ner, 1978, "A	An Introduction to the	Mechanics of Solids," 2 nd Edition,

 S.H. Crandall, N.C. Dahl and T.J. Lardner, 1978, "An Introduction to the Mechanics of Solids," 2nd Edition, McGraw-Hill, Inc..

7. , 1990, ","

8. SDRC, 2003, "I-DEAS 10 NX Series m1," Structural Dynamics Research Corporation, OH, USA.

.

9. CE-FMD Materials Manual.