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Abstract 

   The results of a statistical analysis on the Johnson noise signals, equivalently band pass filtered random 

signals are described in this paper. We determined an optimal sampling time needed to extract the most 

information from the cross power spectral density for a given interval of frequency band, showed that the 

band pass filtered sensor signal and the channel noises are statistically uncorrelated in long term averages, 

estimated the number of signal blocks for the long-term averages required to meet a desired accuracy, 

estimated the amount of time required for processing signals to obtain the desired accuracy, and finally 

showed how accurate is the linearity of the processed signal.  

     

I. Introduction 

 

Johnson noise thermometry is one of the unconventional methods used for an accurate temperature 

measurement [1], by which one can establish thermodynamic temperature scale up to 1000°C with an 

accuracy of 0.2%. During the past 30years, there have been many studies and experimental implementations 

for application of the noise thermometers for hostile environments [2] such as space applications and high 

temperature reactors. Temperature measurements in space nuclear reactors [3] require an accuracy of 1 to 2% 

at temperatures up to about 1400K for about 10 years and the Johnson noise thermometry is believed to be 

able to provide this performance with measurement uncertainty reduced to 0.2% [4]. For high temperature gas 

reactors, there have been studies on Johnson noise thermometry for reliable in-core temperature 

measurements [5]. For nuclear power plant applications, ORNL reports that they performed tests in two 

operating reactors: Diablo Canyon and Sequoyah to obtain inaccuracies of less than 0.1% for ideal situations 

and 0.5-1% at the ends of long extension cables [6].  

 

In this paper, we describe the results of a statistical analysis performed as a part of the design work for a 

digital signal processing system to be used for a Johnson noise thermometry. The Johnson noise [7] is a 



synonym of the “thermal noise” generated by thermal agitation of electrons in a conductor and is known to be 

a result of the Brownian motion of ionized molecules within a resistance [8]. The noise power P in watts is 

given by fkTP ∆= , where k is Boltzman’s constant in joules per kelvin, T is the conductor temperature in 

kelvins, and f∆  is the bandwidth in hertz. The thermal noise power has the property that it is equal 

throughout the frequency spectrum, depending only on k and T and hence it can be used to measure the 

temperature. A random noise with its autocorrelation function zero everywhere but at 0, is called a white 

noise and the Johnson noise has the same property so that ‘white noise’ is another synonym of the Johnson 

noise, and we use this fact to study the Johnson noise statistically by generating random signals.  

 

There are a few different methods in implementing the Johnson noise thermometry. We will be using the 

correlation voltage method which is based on the correlation of signals from two different channels. Let the 

signals from the two channels be { }N,...2,1i|i == φφ and { }N,...2,1i|i == ϕϕ , then one can write 

i1ii x εφ +=  and i2ii x εϕ += , where { }N,...2,1i|xx i == is the sensor signal without the channel noise 

and i2i1 ,εε  are the channel noise signals. As described above, the temperature is a constant multiple of the 

expected value of 2x , i.e. )x(E 2 , and if we compute the expectation value of the product of two signals φ  

and ϕ , then we have 

)(E)x(E)x(E)x(E))x)(x((E)(E 2112
2
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Note that )x(E 2ε , )x(E 1ε are expected to be zeros since the noise signal 1ε  or 2ε and the sensor signal 

x  are uncorrelated with the means of the noise signals zero. The last term )(E 21εε is also zero since the two 

channel noises are uncorrelated. Therefore, the temperature which is a constant multiple of )x(E 2  can be 

computed by the same constant multiplied by )(E φϕ  if the above assumptions are true. 

 

Using the Parseval’s formula [9], )x(E 2  can be computed by a constant multiple of )(E ΦΨ  where 

Φ and Ψ are the Fourier transformations of ϕ and ψ respectively. Note that the channel noises will also be 

removed in )(E ΦΨ . Thus, we can remove EMI noises not filtered by the band pass filter by using the cross 

power spectral density )x()x()x(G ΨΦ= , where Φ and Ψ are considered as functions of the noise signal x. 

Now, suppose we take N independent samples x[n] for n=1,2, …,N and let ])n[x(E]n[x 22 = . Then the 

average τ  of ]n[x 2  for n=1,2,…,N can be written as  
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where )N(2χ is the Chi-square random variable defined by 
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with µ and σ being the mean and standard deviation of ix ’s. 

 

Note that )x(E)(E 2=τ and hence from (2) the mean of )N(2χ is N so that we have the variance 



of )N(2χ equals 2N, i.e. N2))N((Var 2 =χ ). Using the property Var(ay)= 2a Var(y), we now have 
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Thus, we have ( )22 )x(E
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)(Var =τ . Therefore the relative error or the measurement error becomes 
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In the following sections, we prove that the above are indeed true for random signals where random signals 

are of the form ∑ +
α

ααα ωπ )tf2(Sina with αa being a random number in [0,1], αf a random integer in 

]22.1,23[ 2015 ×× , and αw a random number in ]2,0[ π .  

 

2. Determination of the Sampling Time and the Frequency Range 

 

    In this section, we consider how the frequency band for filtering the noise data and the necessary 

sampling time are determined. Ideally, the thermometer should have as wide a bandwidth as possible not only 

to keep the measurement times short but also to increase the accuracy. If we take a shorter sampling time, 

then we will have more accurate temperature during the same time interval since our temperature value will 

be computed by taking the average of long-term fluctuating values. But there are practical limitations. The 

upper bound of the frequency range is required to eliminate the high frequency EMI associated with AM 

radio transmissions. The lower bound is set to reduce the EMI due to low frequency magnetic fields, 

particularly associated with the power supplies. A survey by D. white et al. [8] shows that the typical 

frequency range used is from a few kilohertz to one megahertz. The size of the frequency band and the 

number of points in the sampling block determine the resolution of the Fourier transformation.  

  

We assume that the number of sample points in a block of samples is 1024 points. This limitation 

comes from the fact that the FFT algorithm we will be using for a set of 1024 points requires 6M gates while 

the FPGA board we designed initially has only 15M gates. First, we consider the case where the sampling 

time is 16MHz, i.e.
242

1
h =  sec, which is practically the fastest rate currently, considering the fact that 12 

Bit A/D conversion must be used. Note that there must be more than two points, i.e. three or more points in 

one period of a signal so that the amplitude of the signal after the Fourier transformation is properly reflected 

in the frequency domain. Thus, if we require four points to be the minimum, then the signal with 

222

1
h4 = sec as one cycle time will have the minimum period and hence the maximum frequency 

of 222 (4MHz). In a set of 1024 sample data, there will be 256 cycles for these signals of 



frequency 222 (4MHz). Therefore, the amplitudes after FFT of frequencies corresponding to 257 through 512 

are wasted. For the lower limit, note that input signals of frequency 172 (128kHz) will be transformed to 8 

since there are 8 cycles of such signals in 1024h second time period.  

 

However, the signals we get from the preamplifiers fabricated by Oak ridge National Laboratory 

initially have frequencies below 1.5MHz and the amplitudes of the frequencies in the range 100kHz to 

1.2MHz can be read properly after nonlinear gain correction. Thus, we decided to lower the sampling period 

to 
2023

1
h

×
= sec. Note that for signals of frequency 1.2MHz, one period will be 

2022.1

1

×
sec, which is 

2.5h. Therefore, two or more points will be sampled from each cycle. Now, consider signals of frequency 

3kHz= 1023× cycles/sec whose period will be 
1023

1

×
sec. One block of 1024 sample points will correspond 

to a time interval of length 102 h=
1023

1

×
sec, which is the same as the one cycle length of 3kHz signals, and 

hence 3kHz signals will be transformed to 1 by the Fourier transformation. Thus, if we take 523× kHz 

=96kHz be the lower bound of the filter, then the lower bound 96kHz will be transformed to 32 while the 

upper bound 1.2MHz will be transformed to about 410. Therefore, we will be using the frequency range [32, 

410]. Fig.1 shows the power spectral density of a sample Johnson noise signal filtered in the range 

]22.1,23[ 2015 ×× . Note that the values of the spectral density near 32 and 410 are smaller than those at 

interior points. In the next section, we consider the energy leakage problem at the boundary frequencies 32 

and 410.    

 

fig.1. Power Spectral Density of a Sample Johnson Noise 

 

3. Energy Leakage Problem at Boundary Frequencies 

 

Since the signals are windowed by a frequency band, the power of the original sequence { })i(x  

concentrated at a single frequency will spread by the window into the entire frequency range, which is called 

energy leakage. The left hand side graph of fig.2 shows an example of the Fourier transform of 



{ }1024,...2,1i)ft2(Sin)i(x i == π  with 916 2323f ×−×= and 
20i

23

1i
t

×

−
= . Recall that the signals with 

frequency 1023× will be transformed to 1 and hence signals with frequency 1623×  will be transformed to 

64 and the Fourier transformation of the signal with single frequency 916 2323 ×−×  will have the mean at 

63.5 as shown in fig.2.  

 

 

 

 

 

 

 

 

 

fig.2. Transformed Freq. Distribution for a Single Freq. Input (Left) and  

Sigma Values for Transformed Single Frequency Signals (Right) 

 

As described in section 1, the temperature can be computed by a constant multiple of the average of the 

cross power density spectrum in the frequency domain. Since only the frequencies in a fixed range of 

frequencies will pass through the band pass filter described above and the Fourier transformation of the single 

frequency signals in the band will mostly spread, there will be “energy leakages”. To determine how much of 

the power will be “leaked out” at the boundary frequencies, we computed the following:  

(1) Take a signal )t2(Sin)t(f πω= with the frequency ω  in the interval [ ]2015 22.1,23 ××  and  

Compute 1024,...2,1i),t(ff ii == with 
20i

23

i
t

×
=   

(2) Compute the Fourier transformation of { }1024,...2,1i|f i =  to obtain { }1024,...2,1i|g i =  

where ig  are the magnitude of the complex numbers 

(3) Considering { }1024,...2,1i|g 2
i =  as a probability distribution, compute the mean and sigma of 

this distribution 

(4) Repeat the above process for all the frequencies ranging from 1523×  to 2022.1 × and plot how 

the means are distributed. 

The result of calculation is shown in the right hand side graph of fig.2, where the sigma values ranges from 

0.3 to 1.0 with the mean at 0.669. Note that we may take 0.669+3× 0.234=1.339 as the maximum span of the 

“leakage” and hence if any of the frequencies in the range ]408,34[  will not have any ‘leakage’. Note that 

the leaked out energy at 34 will be at 33 or below and hence the average of the power spectral density at 

interior points will be proportional to the temperature. 



4. Channel Noise 

 

In this section, we consider the effect of the noise picked up in the long channel cables from the amplifier 

to the A/D converter where the temperature is calculated. As described in Section 1, let the signals from the 

two channels be { }N,...2,1i|i == φφ and { }N,...2,1i|i == ϕϕ , and write i1ii x εφ +=  and i2ii x εϕ += , 

where { }N,...2,1i|xx i == is the sensor signal without the channel noise and i2i1 ,εε  are the channel noise 

signals. Consider the expectation value of the product of two signals φ  and ϕ , i.e. 

)(E)x(E)x(E)x(E))x)(x((E)(E 2112
2

21 εεεεεεφϕ +++=++=   ---------------------------   (1) 

In the following, we will examine how large are the values )x(E 2ε , )x(E 1ε , and show that )(E 21εε  

approach to zero faster than the rate 
N

2
which is the relative error for )x(E 2 . We will assume that the 

channel noises are of the same form as the Johnson noise except that the channel noise is not filtered and that 

they are sums of much less number of single random frequency signals. For the signal x, we used signals of 

the form ∑ +×= )bft2(Sina)t(x π  with the amplitude a being a random number in [0,1], the phase angle b 

also a random number in ]2,0[ π , and the frequency f is a random integer in ]22.1,23[ 2015 ×× . For the 

sampling time, we use 
2023

1
h

×
=  so that 









×
=

20i
23

i
fx , for i=1,2, …,1024. As will be described in 

Section 5, the number of terms in the sum of f(t) determines the temperature so that smaller number of terms 

will correspond to a lower temperature. The left hand side graph of fig.3 shows the power of a signal 

{ }1024,...,2,1i|x i = obtained from sums of 4096 random single frequency signals after taking the average of 

64 blocks. For the channel noise signals { }1024,...,2,1i|y i = , we used the similar function f(t) with the 

number of added single frequency signals range from 1 to 64, and 1000 to 1200. The right hand side graph of 

fig.3 shows the power of a noise signal obtained by averaging 64 noise signals each with a single frequency, a 

sum of two single frequencies, a sum of three single frequencies, and so forth. When the correlation 

coefficient c between the two sequences { }ix  and { }iy are computed,  

∑ ∑

∑
=

2
i

2
i

ii

yx

yx

c  

we find that c ranges from 0.028 to 0.038 while mean of the signal powers range from 675 to 686. When 

average of 4096 blocks (see fig.5) is taken, the correlation coefficient decreases to 0.00004 while the signal 

power remains to be the same. When the noise is a sum of 152  random single frequency signals, the 

correlation coefficient is found to be around 0.0006 that is still far below the desired relative error for the 

signal power, i.e. 022.0
64

2

4096

2
== . Therefore, we may consider the random noise signals and the sensor 

signals are uncorrelated.  



 

 

 

 

 

 

 

  

 

 

fig.3. Signal Power of a Sample Voltage Signal and  

          Power of a Sample Noise Signal (Avg. of 64Blocks) 

 

 

 

 

 

 

 

 

 

 

fig.4. Cross Product of a Sample Noise and the Sensor Signal 

(Avg. of 64Blocks – Correlation Coefficient is 0.03) 

 

 

 

 

 

 

 

 

 

 

fig.5. Signal Power (left) and Cross Product of Noise and the Signal (right) 

(Average of 4096Blocks – Corr. Coeff. is 0.0006) 



5. Linearity of the Processed Signal Power 

 

   In this section, we study how the signal power or equivalently the power spectral density increases as 

the number of random signals summed to form the Johnson noise increases. We performed calculations for 

the functions obtained by summing 112 , 122 , … , 182 single frequency random signals with the frequencies in 

the range ]22.1,23[ 2015 ×× . Table 1 shows a summary of the results where the first two rows are the means 

and the sigmas of the averaged signal power while the remaining two rows are for the power spectral density.  

 

Table 1. Average of Signal Power and Power Spectrum Density  

No of Signals 112  122  132  142  152  162  172  182  
  Sigma( SP) 341.129 682.232 1365.417 2732.603 5468.062 10914.70 21800.38 43663.86 
  Sigma( SP) 15.005 30.456  58.799 122.948 233.322 445.624 889.649 1797.51 

   Mean(PSD) 0.45116 0.90241  1.80599 3.61388 7.23178 14.43632 28.83659 57.74675 
   Sigma(PSD) 0.01536 0.03250  0.06013 0.12422 0.22321 0.46009 0.95255 2.00390 

 

  The computed results in Table 1 are drawn by graphs shown in fig.6. The left hand side graph of fig.6 

shows the means of the signal power in the middle curve that is almost a straight line. The two other curves 

surrounding the middle curve are drawn so that they reflect the one-sigma band. Similarly, the right hand side 

graph of fig.6 is drawn for the power spectral density in Table 1. Fig.7 is another schematic illustration of the 

linearity shown in Table 1 with the Gaussian functions center at the means and with the sigmas as the 

standard deviations.  

 

 

 

 

 

 

 

Fig.6. Linearity of Johnson Noise Signals with One Sigma Band -1 

(Average of 1024 Blocks) 

 

 

 

 

 

 

Fig.7. Linearity of Johnson Noise Signals with One Sigma Band -2 

 



 

6. Measurement Uncertainty and Moving Average Problems 

 

In this section, we describe the results of calculations performed to verify the error estimates (3) described 

in Section 1 and the results of an analysis to determine the amount of changes expected by replacing the 

averages by the moving averages. The two graphs in Fig.8 and the two graphs in fig.10 show an example on 

how the signal power changes as the number of blocks used in taking the averages increases. All of the two 

graphs in fig.8 and the two graphs in fig.10 show a random signal obtained by taking a sum of 1024 single 

frequency signals with frequencies in the range ]22.1,23[ 2015 ×× . The first graph in fig.8 is obtained by 

taking an average of 64 blocks, the second is an average of 1024 blocks, the first in fig.10 is an average of 

142  blocks, and the second in fig.10 is an average of 182  blocks. Each of the blocks consist of 1024 

sampled points and each point is sampled at 
2023

1

×
sec intervals. The two figures fig.9 and fig.11 show the 

corresponding power spectral density curves.  

 

Table 2. Relative Error vs the Number of Blocks used for Averages (Sum of 112  random signals) 

                  Average of Signal Power              Average of Spectral Power Density 

No of Blocks Mean Sigma Sigma/Mean Mean Sigma Sigma/Mean 
64 340.802 58.702 0.17225 0.45070 0.06156 0.13658 

1024 341.129 15.005 0.04399 0.45150 0.01515 0.03356 
16384 341.309 3.7120 0.01088 0.45171 0.00396 0.00867 

262144 341.298 0.7850 0.00230 0.45168 0.00122 0.00270 

 

Table 3. Relative Error vs the Number of Blocks used for Averages (Sum of 122  random signals) 

                 Average of Signal Power                Average of Spectral Power Density               

No of Blocks  Mean Sigma Sigma/Mean Mean Sigma Sigma/Mean 
64 685.194 124.93 0.18233 0.90625 0.12115 0.13367 

1024 682.232 30.456 0.04664 0.90335 0.03092 0.03428 
16384 682.104 7.209 0.01057 0.90268 0.00822 0.00911 

262144 682.703 1.776 0.00260 0.90348 0.00316 0.00350 

 

Table 2 shows a summary of the calculated results for random noise signals that are sums of 2048 single 

frequency signals. A total of 262,144 blocks of 1024 points each are generated and the means and sigmas for 

64 blocks, 16× 64 blocks, 16× 16× 64 blocks, 16× 16× 16× 64 blocks are shown. The relative errors defined 

as the ratio of sigma over the mean are shown in column 4 for the signal power, and in column 7 for the 

power spectral density. One can draw a conclusion from these ratios that the relation (3) in section 1 is true. It 

is apparent from Table 3 that the same holds for the case when the noise signals are sums of 4096 single 

frequency signals. 

 



 

 

 

 

 

 

 

 

 

              Fig.8. Signal Power (Left - Average of 62 Blocks ; 702.58,802.340 == σµ  

Right –Average of 102 Blocks; 005.15,129.341 == σµ ) 

 

 

 

 

 

 

 

 

 

Fig.9. Power Density Spectrum (Left – Avg. of 62 Blocks ; 06156.0,45070.0 == σµ  

 Right –Avg. of 102 Blocks; 01536.0,45116.0 == σµ ) 

 

 

 

 

 

 

 

 

 

 

Fig.10. Signal Power (Left - Average of 142 Blocks; 712.3,309.341 == σµ  

Right – Average of 182 Blocks; 785.0,298.341 == σµ  ) 

 

 



 

 

Fig.7. Power  Density Spectrum(Left - Average of 142 Blocks;  

        Right – Average of 182 Blocks; 00271.0,45141.0 == σµ  ) 

 

 

 

 

 

Fig.11. Power Density Spectrum (Left – Avg. of 142 Blocks ; 00458.0,45144.0 == σµ  

                Right –Avg. of 182 Blocks; 00271.0,45141.0 == σµ ) 

 

Next, we consider the problem of replacing the averages by the moving averages. As seen above, the 

high accuracy of the Johnson noise thermometer is achieved through taking a long average of the signal 

power. To obtain an accuracy of 0.28%, however, one quarter of a million blocks of samples are needed to be 

averaged so that a storage of 250,000× (410-32) floating numbers are needed to store the power spectral 

density obtained though FFT. To avoid this large storage area and to avoid the necessary I/O time, one must 

use a moving average algorithm.  

 

Assume that we want to take an average of N terms in a time sequence { }nx . Let 1ma − be the moving 

average using the values up through 1mx − . Then with the value mx , the new average ma will be computed 

by m1mm hxa)h1(a +−= − , where 
N

1
h = . Repeating the same, the next average is computed as 

1mm1m
2

1m hxa)h1(ha)h1(a +−+ +−+−= . In general, we have 

∑
=

−+
−−+=

N

1i
i1N

1i
0N x)h1(haa  

To compute how large is the contribution by { },...2,1,0i|x i =− , we assume that the temperature is steady, i.e. 

ji xx =  for all i and j. Then the multiplier in the sum of the last N terms will be ∑
=

− −=
N

1i

N1i 1h γγ , where 

h1−=γ . Therefore, the remaining sum will be 
N

N

N

1
1 






 −=γ  whose limit as ∞→N  is 

36787944.0e 1 =− . The results of sample calculations for N= 102 , 162 , 202  are; when 102N =  we have 

3677.0N =γ , 00672.0N5 =γ , 000247.0N6 =γ , and when 162N = , we have 3679.0N =γ , 

00674.0N5 =γ , 000248.0N6 =γ , and they are almost the same for 202N = . The coefficients of Nx , 

132N
x − , 1322N

x ×− , 1327N
x ×− , 1328N

x ×−  are found to be 0.152588E-4, 0.118835E-4, 0.104872E-4, 0.925489E-

5, 0.816740E-5, 0.720770E-5, 0.636077E-5, and 0.561472E-5 respectively. The ratio of the 65,536th 



coefficient relative to the most recent is 0.3678822, i.e. about 36%. Thus, we conclude that if we use four to 

five times larger number of blocks, then we can achieve nearly the same accuracy by using the moving 

averages provided that the temperature is steady. The result of a sample calculation to verify this is omitted. 

 

7. Accuracy vs the Processing Time 

 

In this section, we consider how much time is needed to compute the long-term averages of the cross- 

power spectral density. Assume that we need an accuracy of 0.28% that is equal to 
250000

2
 so that the 

number of blocks required is one quarter of a million by (3). We further assume that the sampling rate 

is
242

1
sec, which is practically the fastest A/D conversion time currently assuming that 12bit accuracy is used. 

The largest number of blocks that can be sampled in 1 second would then be 142 so that sampling 182 blocks 

(one quarter of a million blocks) would require 16seconds. On the other hand, for the process time whose 

major component is the FFT algorithm, we need to compute the time required to do one FFT algorithm. To do 

an FFT of 1024 points, one can count easily that there are 75,796 multiplications or divisions, 95,282 

additions or subtractions, and 20,480 evaluations of the Cosine or Sine function. With a 2.8GHz Pentium-IV 

processor using FORTRAN, one can perform 810 multiplications, 4 8104×  additions, about 710  

evaluations of the Sine or Cosine function separately with no type conversions of variables such as from 

integer to real is used. Therefore, using these one can compute that an FFT takes 

4.4/10282,9510796,7510480,20 887 −−− ×+×+× 00302.0= sec, so that about 330 FFT’s can be performed 

in 1 second. In our development, we will be using Xilinx gate arrays so that more FFT’s can be performed in 

1 second. How many FFT’s can be done in 1 second will depend not only on the number of gates used but 

also on the type of gate arrays. Note that no matter how fast the FPGA’s would do the FFT, the limit of 16 

seconds sampling time would still be there. However, for nuclear power plant applications, the maximum 

RCS temperature change during the normal operation is 27°C/hr (0.008°C/sec=0.48°C/Min) due to the 

operation limit specified in the technical specification. Note that 0.48°C is below 0.28% of 310°C and hence 

the change in 1 minute is within the accuracy range of our Johnson noise thermometer.  

 

8. Conclusion 

 

We have verified through a statistical analysis that the Johnson noise thermometer can be used to improve 

the measurements of the RCS temperature within an accuracy of below 0.28%, provided that the necessary 

computation speed can be achieved by using FPGA’s. Some of the design parameters for a design of the 

FPGA processing board have been determined through this study. The shapes of signal power curves shown 

by various figures in this paper differ from the ones for the real signals in that the latter curves are not as flat 



as the former. This is due to the fact that the band pass filter does not work as ideal as one would expect. This 

problem can be handled properly by nonlinear gain correction where the correction factors are obtained from 

a continuous calibration signal. Another difference between the real signals and our random signals is that the 

real signals have EMI noises picked up in the channels. We expect that these EMI noises can be cut off 

properly by using the power spectral density of the sensor signal. 
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