A Quantitative Assessment Method for the NPP Operators' Diagnosis of Accidents

373-1

가 가 가

> , 가

Abstracts

In this research, we developed a quantitative model for the operators' diagnosis of the accident situation when an accident occurs in a nuclear power plant. After identifying the occurrence probabilities of accidents, the unavailabilities of various information sources, and the causal relationship between accidents and information sources, Bayesian network is used for the analysis of the change in the occurrence probabilities of accidents as the operators receive the information related to the status of the plant. The developed method is applied to a simple example case and it turned out that the developed method is a systematic quantitative analysis method which can cope with complex relationship between the accidents and information sources and various variables such accident occurrence probabilities and unavailabilities of various information sources.

1.							
	가		,				
						,	
			·	,		,	
٠		, 가					
TMI-2		, Bhopal	٠	,	1974	DC-10	
가	,	.[1]		,	,		
	,	가	가가			,	
가	가 ,		가		, 가	가	
2.		(Bayesian Netv	work)				
Bayes	Ra	yes		가 가	, 가		
, Belief Model,	network, Cau	isal Probabilistic c Influence Diag		k, Causa	l net, Proba	bilistic Cause-	Effect
		가			Poker Chips	, Problem)[5]	
	5:5		,		가 ,	3:7	,

5:5

.

D	p(D H ₁)	p(D H ₂)
	0.3	0.9
	0.7	0.1
	0.5	0.3
	0.5	0.7
<= 0.997	0.1	0.1
0.997 < <= 0.999	0.3	0.2
0.999 < <= 1.001	0.3	0.3
1.001 < <= 1.003	0.2	0.3
1.003 <	0.1	0.1

1

$$p_1(H_1) = \frac{0.3 \times 0.5}{0.3 \times 0.5 + 0.5 \times 0.9} = \frac{3}{12} = 0.25$$
 (1)

$$p_1(H_2) = 1 - p_1(H_1) = 0.75$$
 (2)

$$p_2(H_1) = \frac{0.5 \times 0.25}{0.5 \times 0.25 + 0.75 \times 0.7} = \frac{5}{26} = 0.19$$
 (3)

$$p_2(H_2) = 1 - p_2(H_1) = 0.81$$
 (4)

, Bayes 가

$$p_3(H_1) = \frac{0.3 \times 0.19}{0.3 \times 0.19 + 0.81 \times 0.2} = \frac{19}{73} = 0.26$$
 (5)

$$p_3(H_2) = 1 - p_3(H_1) = 0.74$$
 (6)

. 1 MSBNx , 가

1 Bag H1 0.25, H2 0.75 (1), (2)

3.

(source) .

,

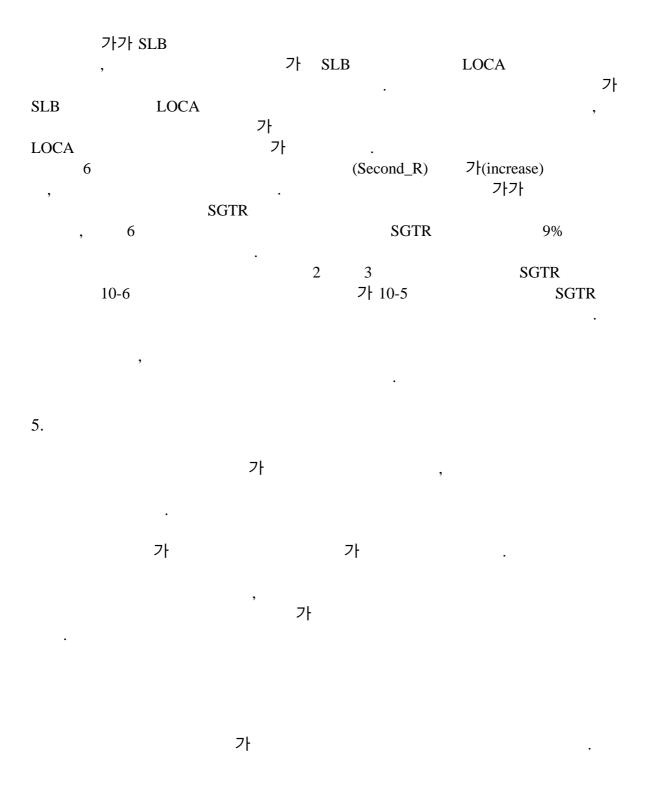
フト (availability) ,

(Containment Radiation, CTMT_R), (Containment Humidity, CTMT_Humidity), 2 (Secondary Loop Radiation, Second_R)

가 가 , 10 가

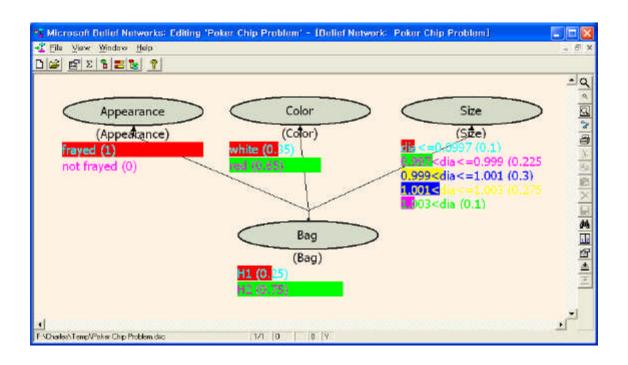
2 4 .

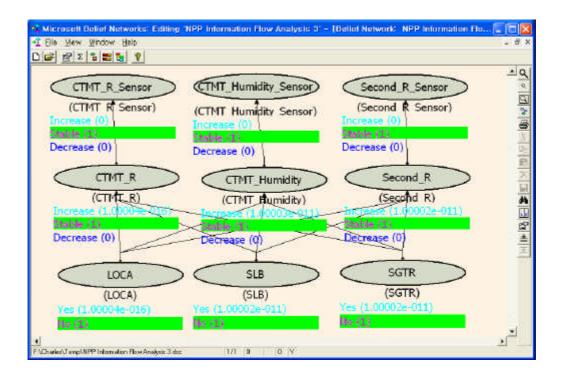
		LOCA	SLB	SGTR
()	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶
		2 フト		

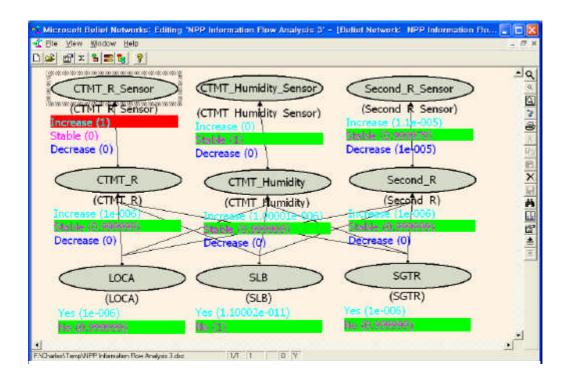

CTMT_R	CTMT_Humidity	Second_R
10 ⁻⁵	10 ⁻⁵	10 ⁻⁵
3 가	가	

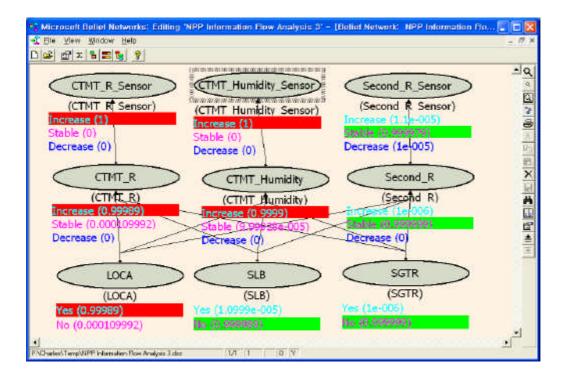
Event	CTMT R	CTMT Humidity	Second_R
LOCA	Increase	Increase	Stable
SLB	Stable	Increase	Stable
SGTR	Stable	Stable	Increase

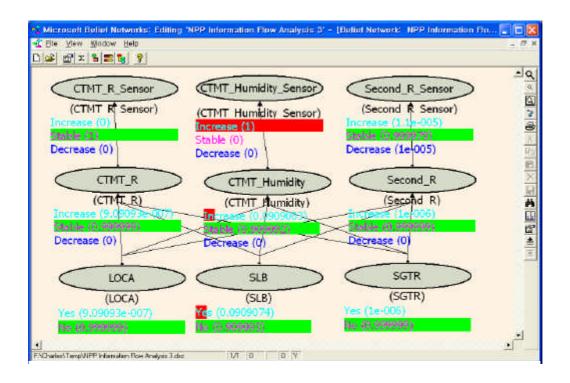
1


4.


2 2 フト Second_R_Sensor	4 (model)	,	フト able) . CTMT_Humidity_Sensor, . 2 LOCA, SLB,
SGTR	, 가	3	たのCA、SLB、フト ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
71	LOCA		10-16 10-6
가 LOCA 가 , (CTMT_Humidity)	, 가	LOCA (CTMT_R)	10-6 , LOCA
4 3 (increase) 7	•	가	(CTMT_Humidity) 7\right\right. 4 , LOCA
5 (increase)	·	. 3	(CTMT_Humidity) 가




[1] N. G. Leveson, Safeware: System Safety and Computers, Addison-Wesley Publishing Company, Inc., 1995


- [2] M. Bouissou, F. Martin, and A. Ourghanlian, Assessment of a safety-critical system including software: a Bayesian belief network for evidence sources, In: Proc Ann Reliab Maintain Symp. 1999:142-50
- [3] N. E. Fenton, B. Littlewood, M. Neil, L. Strigini, A. Sutcliffe, and D. Wright. Assessing dependability of safety critical systems using diverse evidence, IEE Proc Software 1998;145:35-9
- [4] N. E. Fenton, and M. Neil. Software metrics: successes, failures and new directions, Journal of System and Software 1999;47:149-57
- [5] T. B. Sheridan and W. R. Ferrel, Man-Machine Systems: Information, Control and Decision Models of Human Performance, The MIT Press, 1974

