U₃O₈ 가 UO₂

Grain Growth in U₃O₈-seeded UO₂

Abstract

Densification and grain growth have been investigated in 5 wt% U_3O_8 seeded UO_2 and compared with those of the common UO_2 pellet. UO_2 compacts and 5 wt% U_3O_8 seeded UO_2 compacts were sintered at 1300-1700 °C for 0h to 4 h. Density and grain size of the sintered pellets were measured by the water immersion method and the image analyzer. The seeded pellet has a slightly lower density during the intermediate stage. However, the differences between two pellets decrease up to less than 0.5 %TD with increasing the sintering temperature. The grain sizes of two kinds of pellets are similar until 1600 °C but that of the seeded pellet rapidly increases with increasing the sintering temperature.

2003

PCI (Pellet Clad 가 UO_2 Interaction) 가 가 가 .[1] 가 가 . 가 Turnbull [2] . 가 , , 20 µm 1700 °C 40 .[3] Cr₂O₃, Nb₂O₅, TiO₂, SiO₂, Al₂O₃ 가 가 .[4-10] U_3O_8 UO_2 가 가 .[11] 가 가 가 가 . 가 가 UO_2 UO_2 U_3O_8 U_3O_8 가 U_3O_8 가 . UO_2 가 U_3O_8 . 2. ADU–UO₂ UO_2 400 °C 4 U_3O_8 1300 °C . U₃O₈ 4 1.5 가 . U₃O₈ ton/cm² 5 wt%가 ADU–UO₂ . ADU–UO₂ 5 wt% 가 3 ton/cm^2 UO_2 1300 °C 1700 °C . 1700 °C , 1700 °C 1 4

•

1.

80HNO₃-20H₂O₂ 30 1 μm-alumina 2 Image • 300 analyzer 3. Fig. 1(a) UO_2 400 °C U_3O_8 SEM U_3O_8 4 . Fig. 1(b) 1.5 ton/cm^2 1300 °C 가 4 U_3O_8 6.3 μm . 가 가 chip UO_2 가 Fig. 2 가 1300 °C 가 67 %TD 가 UO_2 5 %TD 가 1400 °C • 1700 °C, 4 0.5 %TD 98 %TD Fig. 3 UO_2 1600 °C 가 1700 °C가 sub-micron 가 1.5 μm 4 . U₃O₈ 가 7 µm , Fig. 4 1600 °C 가 sub-micron 가 가 U_3O_8 . 가 stacking fault twin 1700 °Cフト 가 4.6 µm 4 14 µm 1600 °C Fig. 5 UO_2 가 가 가 sub-micron . 가 10 , Fig. 3 가 4 . , 1600 °C 가 . 1700 °C가 1700 °C, 0 UO_2 가 UO₂ 1.6 µm 4.5 µm

가 . , UO_2 1700 °C, 4 가 14 µm UO_2 7 µm • 가 가 가 UO_2 가 . , , 가 가 U_3O_8 . , 가 U₃O₈ 가 . UO_2 가 , UO 가 U_3O_8 가 • 가 가 , 가 가 . 가 Fig. 6 1650 °C, 0 가 . . 1700 °C가 가 . 가 가 . 가 . Twin

기 .[12] U₃O₈ 가 UO₂ 가 .

4.

				UO_2		U_3O_8	5 wt%		가			
						UO_2		5 wt%	U_3O_8		가	
		1300	°C	1700	°C		가	0		4		1300
°C		가					가		가	가		가
		가		가 1700	°C				가		. U_3O_8	5
wt%	가			1600	°C							
		1700 °C			가				UO_2			2
			4		2							

- 1. A. H. Booth, AECL 496 (1957).
- 2. J. A. Turnbull, J. Nucl. Mater., 50 (1974) 62-68.
- 3. K.W. Song et al, J. Kor. Nucl. Soc. 26 (1994) 484.
- 4. I. Amato, R. L. Colombo, A. P. Balzari, J. Nucl. Mater., 18 (1966) 252.
- 5. J. B. Ainscough, F. Rigby, S. C. Osborn, J. Nucl. Mater. 52 (1974) 191.
- 6. Hj. Matzke, J. Nucl. Mater. 30 (1969) 26.
- 7. H. Assmann, W. Dorr. G. Gradel, G. Maier, M. Peehs, J. Nucl. Mater. 98 (1981) 216.
- J.B. Ainscough, L.F.A. Raven, P.T. Sawbridge, "Fission Gas Retentive UO2 Fuels," in Fabrication of Water Reactor Fuel Elements, P.53, IAEA-SM-233/16 (1979).
- 9. K.C. Radford, J.M. Pope, J. Nucl. Mater., 116 (1983) 305.
- 10. K. W. Lay, J. Am. Ceram. Soc., 51[7], (1968) 373-376.
- 11. K.W. Song et al, J. Nucl. Sci. & Tech., Supplement 3 (2002) 838-841.
- 12. Y.S. Yoo et al., J. Eur. Ceram. Soc., 17 (1997) 805-811.

Fig. 1. SEM images of (a) raw U_3O_8 powder and (b) U_3O_8 seed.

Fig. 2. Variations in relative density for ADU-UO $_2$ and 5 wt% seeded UO $_2$.

Fig. 3. Microstructures of ADU-UO₂ samples sintered at (a) 1600 °C for 0 h, (b) 1700 °C for 0 h, (c) 1700 °C for 1 h and (d) 1700 °C for 4 h.

Fig. 4. Microstructures of 5 wt% seeded UO₂ samples sintered at (a) 1600 °C for 0 h, (b) 1700 °C for 0 h, (c) 1700 °C for 1 h and (d) 1700 °C for 4 h.

Fig. 5. Variations in average grain size for ADU-UO₂ and 5 wt% seeded UO₂.

Fig. 6. Microstructures of 5 wt% seeded UO_2 sintered at 1650 $^{\circ}\text{C}$ for 0 h.