

Abstract

Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of riskinformed applications (RIA). To use RIA, the present study focuses on the detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model for Korea standard nuclear power plant (KSNP). The primary purpose of the present study is to evaluate the success criteria of aggressive secondary cooldown (ASC) in small break loss of coolant accident (SBLOCA) with total loss of high pressure safety injection (HPSI) and to enhance the understanding of related thermal hydraulic behavior and phenomena. The accident scenario was 2 inch coldleg break LOCA without HPSI, with 1/2 low pressure safety injection (LPSI), and performing ASC limited by 55.6°C/hr (100°F/hr) cooldown rate at 15 minute after reactor trip, which successively reaches the LPSI condition for about 1.5hr after starting ASC operation with the peak cladding temperature (PCT) of the hottest rod below the core damage criteria 1204.4°C (2200°F). In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that operator should maintain the adequate ASC operation. However, it is necessary to evaluate uncertainties arisen from the related parameters of the ASC operation.

1.

(RIA)

-가	,	,		,	-	•	PSA F	RIA
	PSA	A						
RIA	PSA							
ASC	SBLOCA7	, '}		HPSI가		RCS		
				- , RCS				
- 1	RCS		SIT	LPSI				(SG)
						(ASC)	PSA	
					[, 1998; Li	u, 2000]	. SBLOCA
HPSI		가						(Beyond
DBA)						P	SA	
SBLOCA	HPSI			가				
-	10							
						[As	aka, 199	8; Clement,
1993; Kawanis	hi, 1991; Kumar	naru, 1992	2; Lars	on, 1988; Liu,	1998; Liu,	2000; Nalezny	, 1981;	Noel, 1989;
Streit, 1987; W	atanabe, 1995; W	/ever, 199	5:	, 2002].				

~~~~,	1,01,11	ataliaee, 1990, 11	, 1770,	, –	••=].		
			SBLOCA	フ	-	HP	SI
		4					
		]	RCS가 SIT	LPSI			. Liu,
2000					2	SIT	
RCS			가			가	
			가	가 :	가		
	SIT	RCS				LPSI	
	가	. SIT	F	RCS	LPSI		가

PWR

#### SBLOCA HPSI 1.

Reference	Facility	Break Size	Recovery	Initiation Criteria
	-		Actions	
Kumamaru, 1992	LSTF		$\mathbf{P}^1$	Core start to heatup
Watanabe, 1995	LSTF		Р	Core start to heatup
			$S^2$	Core start to heatup
Streit, 1987	Semiscale	(0.5%->2 inch;	S	1. Peak Cladding Temperature up to 811K
	MOD-2C	2.1%->4 inch)	$\mathbf{R}^3$	2. Peak Cladding Temperature up to 811K (1000°F)
			S	& Peak Cladding Temperature up to 950K (1250°F)
			S	3. PV water level drop to core top
Asaka, 1993	LSTF		$PBF^4$	Core start to heatup
			PBF	Primary side full of water
Kawanishi, 1991	EOS		S	Core start to heatup before loop-seal
				clearing and system pressure remains unchanged
Clement, 1993	BETHSY	0.5%, 2%	S	Peak Cladding temperature up to 723K
Liu, 1998	IIST		S	PV water level drop to core top
			S	PV water level drop to 90% of core heated zone
Wever, 1995	PKL		S	System pressure remains unchanged
				within 30min
Noel, 1989	BETHSY		S	600s after HPSI signal
Asaka, 1998	LSTF		S	600s after the break
IAEA, 1994	PMK-2	7.4%	S	setpoint (9.21MPa) +150sec

P: Primary-side depressurization S: Secondary-side depressurization R: RCP restart PBF: Primary-side Bleed and Feed

1 2 3 4

	가							
	7	ነት						
					가	[Liu	ı, 2000].	
		Liu, 2000	1		1			
	RIA			PSA				
	HPSI		SE	LOCA	ASC			
							,	PSA
가		,		,				
	가	· ·						
		(EOP)	SBLOCA	HPSI				
RCS							SG	
						가	(PTS	5)
	LOCA		(Rapid C	Cooldown	)	:	55.6°C/hr	(100°F/hr)
							ASC	
								RELAP
	MARS2.1							
[	, 2002].			3,4	ŀ			
SLOCA/ASC		,						

•

.

#### 3,4 MARS 2.

### 2.1

3,4 Combustion Engineering Co. System 80 2 Loop PWR . Loop 2817MWth (SG), 42 (Hotleg) . 7† (Pressurizer) 1 Loop (RCP), 30 2 (Coldleg) . , HPSI, LPSI, . SIT가

# 2.2

	3,4			(RCS)	3,4	RELAP5
			3,4		3,4	
					3,4	
3,4					189	Volume, 203
Junction,	223	Heat Structure			가	2
2	3			가		
					3.	

¹ PSA	LOCA			2
6	LOCA	, 2	LOCA	[KEPCO, 1997].
LOCA				PSA
2	LOCA			
2				
³ PSA		:	가	

[ASME, 2001].

1973	ANS	EOP	
		2	SBLOCA
가			

<b>2. ASC</b>	3,4		
Parameter	FSAR	The present analysis	Remark
Reactor Power (MWth)	2871 (102%)	2815 (100%)	*
RCS Pressure (MPa)	16.03	15.51	
Core Flow Rate (kg/s)		15104	
Core Bypass Flow Rate (%)		3.1%	
Cold-Leg Temp. (K)	573.2	568.63	
SG Pressure (MPa)	7.38	7.27	
SG Level (m)	11.87	11.87	
Rx Trip and SIAS Setpoint (MPa)**	12.89	12.15 (1762psia)	
* RCP ** SIAS: Safety Injection Actuation Signal			
<b>3. ASC</b>	3,4	가 (	)
3. ASC Parameter	3,4 Description	가 (	) Remark
3. ASC Parameter Break Location & Size	3,4 Description 2'' Coldleg Br	가 ( reak	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model	3,4 Description 2'' Coldleg Br ANS73 Decay	가 ( reak Heat Model	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint	3,4 Description 2' ' Coldleg Br ANS73 Decay Lo PZR Pr Trip	가 ( reak Heat Model o Signal (12.15MPa)	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint Turbine & MFW Trip	3,4 Description 2'' Coldleg Br ANS73 Decay Lo PZR Pr Trip Linked with Re	가 ( reak Heat Model o Signal (12.15MPa) eactor Trip Signal	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint Turbine & MFW Trip RCP Trip Setpoint	3,4 Description 2'' Coldleg Br ANS73 Decay Lo PZR Pr Trip Linked with Re Linked with Re	7       (         reak	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint Turbine & MFW Trip RCP Trip Setpoint Containment Boundary Condition	3,4 Description 2'' Coldleg Br ANS73 Decay Lo PZR Pr Trip Linked with Re Linked with Re Fixed Atmosph	가 ( reak Heat Model o Signal (12.15MPa) eactor Trip Signal eactor Trip Signal here	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint Turbine & MFW Trip RCP Trip Setpoint Containment Boundary Condition Availability of ECCS	3,4 Description 2'' Coldleg Br ANS73 Decay Lo PZR Pr Trip Linked with Re Linked with Re Fixed Atmosph No HPSI/ No S	??       (         reak       Heat Model         be Signal (12.15MPa)       Pactor Trip Signal         peactor Trip Signal       Pactor Trip Signal         pere       IT/LPSI(1/2)	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint Turbine & MFW Trip RCP Trip Setpoint Containment Boundary Condition Availability of ECCS Availability of Secondary-Side	3,4 Description 2'' Coldleg Br ANS73 Decay Lo PZR Pr Trip Linked with Re Linked with Re Fixed Atmosph No HPSI/ No S All SG (2)	7!       (         reak       Heat Model         be Signal (12.15MPa)       Signal         beactor Trip Signal       Signal	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint Turbine & MFW Trip RCP Trip Setpoint Containment Boundary Condition Availability of ECCS Availability of Secondary-Side SG Control System	3,4 Description 2'' Coldleg Br ANS73 Decay Lo PZR Pr Trip Linked with Re Linked with Re Fixed Atmosph No HPSI/ No S All SG (2) AFW(2)/MSSV	7!       (         reak       Heat Model         be Signal (12.15MPa)       ()         eactor Trip Signal       ()         eactor Trip Signal       ()         enere       ()         IT/LPSI(1/2)       ()         /(4)/ADV(4)       ()	) Remark
3. ASC Parameter Break Location & Size Decay Heat Model Reactor Trip Signal Setpoint Turbine & MFW Trip RCP Trip Setpoint Containment Boundary Condition Availability of ECCS Availability of Secondary-Side SG Control System ASC Operation Initiation Time	3,4 Description 2'' Coldleg Br ANS73 Decay Lo PZR Pr Trip Linked with Re Linked with Re Fixed Atmosph No HPSI/ No S All SG (2) AFW(2)/MSSV Starting at 15m	7!       (         reak       Heat Model         be Signal (12.15MPa)       Signal         beactor Trip Signal       Signal         beactor Trip Signal       Signal         bere       IT/LPSI(1/2)         /(4)/ADV(4)       Signal filter Rx Trip	) Remark

## 2.3 ADV

A	SC							ADV		
	(T) (				. 3,4		EOP			
	(Rapi	d Cooldow	vn)	ADV,		(TBV) (	(MSIV)	가		SBLOCA
MSIV	ADV	Common 가	Header 가 가		TBV . ADV		````	SBLOCA ADV	ASC	ASC
2.3.1 A	DV		:							
			(MCR)							
		כן	ł		가				,	

T _{AVO}	Т,	avg T _H (TI-1	11X/121X)		250°C T _C (T	C ~ 350° TI-111Y/1	² C . 21Y)
$T_{AVG1} = 1/20$	$(T_{H1} + T_{C1})$				(1.	.a)	
$T_{AVG2} = 1/2$	$(T_{H2} + T_{C2})$				(2.	<b>b</b> )	
$T_{AVG} = 1/2(1)$	$T_{AVG1} + T_{AVG2}$				(3	.c)	
T _{AVG} , T _{AVG1}	, T _{AVG2}		T _{AVG}	가			가
						가	, <b>.</b>
Loc	op	Т	T _{AVG} AVG		가		
<b>T</b> 7 1			T _{AVG}	12.1	2.4		
Volume	(7h) Li	uuid Tempers	. MARS	62.1	3,4 Temperatur	e (Temp	g) ( )
Heat Structure Temperat	ure (Httemp)	quid Temper 가	aure (Tempi),	( ) Oas	Insid	AS(	z, ( )
					(Insig	int)	
()) Liquid Temper LOCA 7) T	empf		Volume		Voidg	가	1
( ) Gas Temperature ( ) Gas Temperature (Subcoc Volue	e (Tempg) bled)				·	Vo	olume
Volu	lic	가		•			
가 .		,	,	Reflux	Condensat	ion	Reflux
Condensation	SG Tempg		(Fluctuation	1)	. Temp	og	가
가		Ter	mpg		-	-	가
			10				
( ) Heat Structure T	Cemperature (Htte	emp)	Httemp	Volume		Heat Stru	icture
	Tempf	Tempg Httemp ASC	Volume ASC			T _{AVG}	
Volume Httemp		•					
2.3.2 ADV							
ASC	5:	5.6°C/hr (10	0°F/hr)				ADV
가		$T_{AVG}$		ADV			•
	MARS						Time
Dependent Junction				,			

3가 ADV 가 ADV (가) (Best-Fitting Control), () (Proportional-Integral Control), ( ) (Conservative Control) ADV 가 (가)  $A^{n+1}$ ADV n-1 . , n+1 n  $A^{n+1} = A^n + \frac{\partial A}{\partial T} (\boldsymbol{a} \cdot \Delta T^n - \Delta T^{n-1})$ (2)  $= A^{n} + 10^{-1} (\Delta T^{n} - \Delta T^{n-1}) + 10^{-5} \cdot \Delta T^{n}$  $\Delta T = T_{avg} - T_{ref} \qquad ,$  $T_{avg} = 1/2(T_{Hotleg} + T_{Coldleg})$  $T_{ref}$ 55.6°C/hr (100°F/hr)  $\partial A/\partial T$ 10%/°C 1/100000 . a ( ) ADV  $A^{n+1} = A^{n} + 10^{-3} \Delta T^{n} + \int_{0}^{t} \Delta T dt$ (3) (가) ( ) ADV ADV Operator Action / 1/20 NA/sec Temperature 가 4°C  $dA/dT = 1/4 NA/^{\circ}C$ Operating Interva 530 가 3000 3200 3400 time 2 1. 가  $A^{n+1} = A^n + \frac{\partial A}{\partial T} \Delta T^n = A^n + \frac{1}{4} \Delta T^n$ (**4.a**)  $-\frac{1}{20}\Delta t \le \frac{1}{4}\Delta T \le \frac{1}{20}\Delta t$ (**4.b**)  $\partial A/\partial T$ 가 1/4가 1

가 .

2.4

	HPSI	SBLOCA	ASC			
	(Case 0) 2	LOCA 가	가 . ESF		가	
HPSI		. SIT				
	. LPSI	50% 7ト (1/2	)	가	. 2	SG

15	ADV 7ŀ	가 FOP	가 가 .	. ASC 가 RCP	. SG 5	(300)	SG
	가	4	RCP				
	-1	5		•	·		RCS
	۲۲ (SIAS)	12. 가 .	15 MPa (17	62 Psia)	DBA		
			1	3.1	가		가
	(MFIV) MSIS		(MSI	V)		(MSIS)	
	MBIB	SIAS	MSIS7	•	가	. SIAS	
				21			
가	. HP	SI	가				
			フ	ŀ.		가	
	45	(delay tin	ne) .		SG		
	. SG ADV						
	SG				. ASC		
	15 (900 )		가	. ASC	55.6°C/hr	(100°F/hr)	

.

# 3.

3.1

(Case 0) , ASC 2~ 9 • 가 HPSI SBLOCA 1 /2 ECCS 2 . 가 24 3 2 1 (Core), . (Collapsed Water Level) (Downcommer), SG 4 PCT 5 Hottest Rod 6 ASC . 55.6°C/hr ADV . 7 ASC . 8, 9 ECCS - HPSI, SIT, LPSI-(Valve Open Ratio)

.







(tempg),

.



가









13



ADV

.



ADV





ADV

ADV

Hottest Rod (15).





PCT



. ADV







#### 4.

HPSI SBLOCA ASC 77 2 HPSI 1/2 LPSI 15 55.6°C/hr (100°F/hr) 1204.4°C (2200°F) 77)

) 1 RCS Loop RCS Reflux Condensation SG-SG Reflux Condensation RCS (Fluctuation) ASC RCS )  $T_{AVG} \\$  $T_{AVG}$ 가 (tempf), (tempg), 가 가 (httemp) 3가 . ASC ADV ,

,

.

SBLOCA HPSI ASC PSA 7[†] . PSA ASC . ASC / 7[†]

가 .



- [Asaka, 1998] H. Asaka, Y. Anoda, Y. Kukita and I. Ohtsu, "Secondary-Side Depressurization During PWR Col-Leg Small Break LOCAs Based on ROSA-V/LSTF Experiments and Analyses," J. Nuclear Science and Technology, Vol.35, p.905, 1998
- [ASME, 2001] "Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications," Draft, The American Society of Mechanical Engineers, 2001
- [Burchill, 1982] Burchill, William E., "Physical Phenomena of a Small-Break Loss-of-Coolant Accident in a PWR," Nuclear Safety, Vol. 23, No. 5, pp. 525-536, 1982
- [CE, 1996] "Emergency Procedure Guidelines," CEN-152, Revision 4, Combustion Engineering Co., 1996
- [Clement, 1993] P. Clement, T. Chataing, and r. Deruaz, "PWR Accident Management Related Tests: Some th Int. Topl. Mtg. Nucl. Reactor Thermal Hydraulics, Grenoble, France, October 5-8, 1993, pp. 1377, French Section of the American Nuclear Society, 1993
- [Hong, 2002] Soon-Joon Hong, Jae-Hak Kim, Yong-Soo Kim, and Goon-Cherl Park, "Thermal-Hydraulic Analyses of Steam Generator Tube Rupture Accident for the KORI Nuclear Unit 1 Pressurized Thermal Shock Study," Nuclear Technology, Vol. 138, p.273, 2002
- [Kawanishi, 1991] K. Kawanishi, A. Tsuge, M. Fujiware, T. Kohriyama, and H. Nagumo, "Experimental Study on Heat Removal During Cold Leg Small Break LOCAs in PWRs," J. Nucl. Sci. Technol., Vol. 28. pp.555, 1991
- [Kumamaru, 1992] H. Kumamaru and Y. Kukita, "PWR Cold-Leg Small-Break LOCA with Total HPI failure-Effect of Break Area on Core Dryout and Intentional Depressurization for Prevention of Excess Core Dryout," J. Nucl. Sci. Technol., Vol 29, pp. 1162, 1992
- [Larson, 1988] T.K. Larson and G.G. Loomis, "Semiscale Program: A Review of Mod-2 Results," Nucl. Safety, Vol.29, pp.150, 1988
- [Liu,1998] T. J. Liu, C.H. Lee, and C.Y. Chang, "Experimental Investigation of Early Initiated Secondary Bleed-and-Feed on PWR Inadequate Core Cooling Accident Performed at the IIST Facility," Proc. 6th Int. Conf. Nuclear Engineering (ICONE-6), San Diego, California, May 10-15, 1998, ICONE-6017, American Society of Mechanical Engineers/Japan Society of Mechanical Engineers, 1998
- [Liu, 2000] Liu, Tay-Jian, Chan, Yea-Kuang, Ferng, Yuh-Ming, and Chang, Chien-Yeh, "Experimental Investigation of Early Initiation of Primary Cooldown by Secondary-Side Depressurization in a PWR Inadequate Core-Cooling Accident," Nuclear Technology, American Nuclear Society, Vol. 129, No. 2, p.187, 2000
- [Nalezny, 1981] C.L. Nalezny, "Summary of Nuclear Regulatory Commission's LOFT Program Experiments," NUREG/CR-3214, U.S. Nuclear Regulatory Commission, 1981
- [Noel, 1989] R. Noel and R. Deruaz, "2' Cold Leg Break at BETHSY Facility," Proc. European Nuclear

가

Society/American Nuclear Society Int. Conf. Thermal Reactor Safety, p. 441, 1989

- [Streit, 1987] E. Streit, "Results of Semiscale Mod-2C Small-Break Loss-of-Coolant Accident without HPI (S-NH) Experiment Series," NUREG/CR-4793, U.S. Nuclear Regulatory Commission, 1987
- [USNRC, 1987] "Format and Content of Plant-Specific Pressurized Thermal Shock Safety Analysis Reports for Pressurized Water Reactor," Regulatory Guide 1.154, U.S. Nuclear Regulatory Commission, 1987
- [Watanabe, 1995] N. Watanabe, T. Tamakoshi, H. Takahashi, H. Kumamaru, and M. Hirano, "Analytical Study on Effect of Reactor Depressurization Measures During LOCA Sequences Followed by Loss of HPI in PWRs," Proc. 3rd Int. Conf. Nucl. Engineering (ICONE-3), Kyoto, Japan, April 23-27, 1995, p. 1303, American Society of Mechanical Engineers/Japan Society of Mechanical Engineers, 1995
- [Wever, 1995] P. Wever, K.J. Umminger, and B. Schoen, "PWR-related Integral Safety Experiments in the PKL III Test Facility SBLOCA Under Beyond-Design-Basis Accident Conditions," Proc. 7th Int. Topl. Mtg. Nucl. Reactor Thermal Hydraulics, Saratoga Springs, New York, September 10-15, 1995, p.2856, 1995