Behaviors of K_{1H} by Supersaturated Concentration of Hydrogen in Zr-2.5Nb Pressure Tube

Abstract

The aim of this study was to obtain a better understanding of delayed hydride cracking (DHC) of Zr-2.5Nb pressure tube with hydrogen concentration. DHC tests were conducted at 280 °C on Curved Compact Tension (CCT) and Cantilever Beam (CB) specimens with 60, 80, 100 ppm H to determine the threshold stress intensity factor, K_{1H} in axial and radial directions of the Zr-2.5Nb tube, respectively. Over a hydrogen concentration range of $80 \sim 100$ ppm, K_{1H} for the Zr-2.5Nb tube 5.84 *MPa* \sqrt{m} in the axial direction and 8.4 *MPa* \sqrt{m} in the radial direction, both of which were constant independent of hydrogen concentration, However, at 60ppm, K_{1H} increased unexpectedly to a higher value. Based on the results, K_{1H} for Zr-2.5Nb tube is discussed with the fracture surface and a supersaturated concentration of hydrogen.

Zr-2.5wt%Nb

*,

K_{1H}

가		[1],	matrix	x		Delayed
Hydride Cracking (DHC)	(Hydride)				
	[2].	rolled joint				
,			가		DHC	
			. 1983		7	ł
	hydride l	olister				
	[3].		1, 2, 3, 4		CA	NDU
						[4],
DH	С		가			K _{IH} 가
	,			K_{IH}		
2.						
2.1						
2.1	CANDLI 4		l manlead 7 n)	5 ML		
9009C 11.1	Uat Estrucion	Cold Drowin	I-WOIKEU ZI-2	.3INU		
	HOL EXTRUSION	Cold Drawin	lg (25%)	400 °C	24 1	Auto clave
. CANDU			450 <i>Mpa</i>	7		
800 <i>MPa</i>		(I _t =0.61, 1	$_{\rm r}=0.33, \ {\rm f_l}=0.0$	/) .	,	
(11:1)					•	
Fig. I CANDU						
CCT(Curved Compact Tensior	n) CB(Canti	lever Beam)		. Fig. 1(a) CCT	
20.4mm, 17mm , F	rig. 1(b) CB		3.5 mm,	38 mm	•	

(a) CCT (b) CB Fig. 1 Schematic Illustration of Cantilever Beam (CB) and Curved Compact Tension (CCT)

2.2

(Cathodic Hydrogen Charging

Method)

60 ppm, 80ppm, 100ppm

μm

(a)Axial Section

.

(b) Circumferential Section

Fig. 2 Morphology Comparison of 100 ppm Hydride after Furnace Cooling

			60 ppm	302°C	33	, 80 ppm
320°C	23 , 100 ppm	340°C 18				(furnace
cooling)	100ppm	Fig. 2				Hot
Vacuum E	xtraction					

2.3

		CB		(Acoustic E	Emission)	DHC	2	
K_{1H}	,			ССТ	DCPD		$\mathbf{K}_{1\mathrm{H}}$	
	DHC	Fig. 3			Κ			
				12 ~25 MPav	m		20 MPa√n	n
		0.5~5°C	soaking		, soaking	310 °C	1	
1~2 °C	C/min	DH	C			, soaking		
						,	DHC	
soaking	가						[6].	가 -
			controlle	r		. DHC	2	,
Zr-2.5Nb		[5	5]	K_{IH}	,		stereoscpe	OM

Fig. 3 DHC Test Condition

3.

Fig. 5 Comparison of $K_{I\!H}$ between CB and CCT

Fig. 6 Hydrogen concentration (ΔC) dependence of $K_{\rm IH}$ for CB and CCT at 280

	,		60, 80, 100, 2	200 ppm	, Zr		
11, 31, 51,	151 ppr	n.		60 ppm	, DHC 가		가
matrix					K _{IH} .		, K _{IH}
				(ΔC)	, ΔC 가 30 ppm	280 °C	DHC
	\mathbf{K}_{IH}						
Fig. 7	CB	CCT	DHC			. CCT	

, CB .

Fig. 7 Fractured Surface of CCT and CB specimen

4.

DHC

C.	ANDU Zr-2.5Nb	60, 80, 100 ppm	CCT	CB	DHC
280	°C K _{IH}				
(1)	K_{IH} ΔC 7 \downarrow 30 ppm $MPa\sqrt{m}$,	8.44 $MPa\sqrt{m}$.			5.84
(2)					K _{IH} 가

[1] IAEA, IAEA-TECDOC-684, IAEA, Vienna, 1993, pp.7-56.

- [2] B.A. Cheadle et als, ASTM STP 939, ASTM, Philadelphia, 1987, pp.224-240.
- [3] E. G. Price : AECL Report, AECL-8338 (1984)

[4] KINS, " 1 ,1994

[5] KAERI, "Zr-2.5Nb ," KAERI/TR-1329/99

[6] G.K. Shek and D.B. Graham, "Effects of Loading and Thermal Maneuvers on Delayed Hydride Cracking in Zr-2.5Nb Alloys," ASTM STP 1023, 1989, pp. 89-110

[7] S. Sagat, C. E. Coleman, M. Griffiths, and B. J. S. Wilkins, Zirconium in the Nuclear Industry, Tenth International Symposium, ASTM STP 1245, 1994, pp. 35-61.

[8] S. S. Kim, S. C. Kwon, and Y. S. Kim, J. Nucl. Mater. Vol. 273, 1999, pp.52-59.

[9] C. E. Coleman, Zirconium in the Nuclear Industry, Fifth Conference, ASTM STP 754, 1982, pp. 393-411.

[10] H. Huang, & W. J. Mills, Metal. Transactions A 22A (1991), pp.2149-2060.

[11] W. J. Mills, and F. H. Huang, Eng. Frac. Mech. 39 (1991), pp. 241-257.

[12] S. S. Kim, K. N. Choo, S. B. Ahn, S. C. Kwon, Y. S. Kim, and I. L. Kook, Proceedings of the Korean Nuclear Society Spring Meeting, Seoul, Korea, May, 1998, 93-98.

[13] Z. L. Pan, M. P. Puls, "The terminal solid solubility of hydrogen and deuterum in Zr-2.5Nb alloys", J. Nucl. Mater., 228, pp. 227-237.