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Abstract 

 

Under the deregulation environment, the performance enhancement of BOP in nuclear power plants is 

being highlighted. To analyze performance level of BOP, we use the performance test procedures 

provided from an authorized institution such as ASME. However, through plant investigation, it was 

proved that the requirements of the performance test procedures about the reliability and quantity of 

sensors was difficult to be satisfied. As a solution of this, state analysis method that are the expanded 

concept of signal validation, was proposed on the basis of the statistical and heuristic approaches. Authors 

recommended the statistical linear regression model by analyzing correlation among BOP parameters as a 

reference state analysis method. Its advantage is that its derivation is not heuristic, it is possible to 

calculate model uncertainty, and it is easy to apply to an actual plant. The error of the statistical linear 

regression model is below 3% under normal as well as abnormal system states. Additionally a neural 

network model was recommended since the statistical model is impossible to apply to the validation of all 

of the sensors and is sensitive to the outlier that is the signal located out of a statistical distribution. 

Because there are a lot of sensors need to be validated in BOP, wavelet analysis (WA) were applied as a 

pre-processor for the reduction of input dimension and for the enhancement of training accuracy. The 

outlier localization capability of WA enhanced the robustness of the neural network. The trained neural 

network restored the degraded signals to the values within ±3% of the true signals. 
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I. INTRODUCTION 

 

Now nuclear industry is under deregulation. On the basis of this background, the performance 

enhancement of secondary system of nuclear power plants (NPPs) called balance of plant (BOP) is being 

highlighted. The most interesting performance factor in BOP may be electrical output and heat rate. These 

performance factors are analyzed according to the performance test procedures provided from an 

authorized institution such as the American Society of Mechanical Engineers (ASME). However there are 

some problems in order to execute accurate performance tests even though qualified performance test 

procedures are used. It is difficult to measure the quality of saturated steam, so performance analysis is 

less accurate and more complicated. Moreover much more sensors are indispensable to calculate steam 

quality by mass and energy conservation, but even the quantity of sensors is not enough because 

minimum number of sensors for normal operation is installed in BOP [1]. This feature also makes signal 

validation difficult. In conclusion, the expansion of sensors is the first requirement for the enhancement of 

performance test accuracy. However the expansion of hardware may have concomitant economical and 

technical problems. We should trade off between the cost for new sensor installation and the benefit 

gained by performance tests. Considering cost-effectiveness, software-based solutions are noteworthy. 

The signal validation using neural networks among software-based solutions may be one of the most 

general approaches in case of a black box model that is difficult to simulate analytically. The advantage of 

the black box model is that we don’t have to know about the exact mechanism of a system. We do nothing 

but grasp the relation between the input and output signals. Many neural networks for signal validation 

have been proposed and they may be classified into two parts mainly. The one is for the selection of input 

parameters or the enhancement of training methods [2~5]. The other is the actual application [6~16]. The 

applications were focused on the estimation of the important parameters, for instance, feedwater flowrate 

or electric output. The analysis of system behavior, the diagnosis for trouble shooting, and the detection 

of fault signal were the important themes. These methodologies have the selection technique of input 

parameters, special training technique, and network structure to optimize training time and accuracy.  

In this study, the statistical model based on linear regression will be proposed for the detection of sensor 

failure or degradation as a reference method. And then a neural network will be recommended to cover 

the shortcomings of the statistical model, especially robustness. The state analysis methodology using a 

neural network will be focused to compress input parameters because we must deal with a large quantity 

of sensors. We will be able to find strength of wavelet analysis as a compressing method. 

 

II. DEVELOPMENT OF EMPIRICAL MODELS FOR STATE ANALYSIS 

 

II.1. State analysis and BOP modeling 

Signal validation is to inspect whether a signal represents the state of a system correctly or not. ‘State’ 
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means any of various conditions characterized by definite quantities. A lot of performance indices in BOP 

such as electrical output or heat rate are calculated using state information collected by sensors. The 

typical process of signal validation is shown in Figure 1 [17]. The kernel of signal validation is to 

measure or estimate the same signal using various techniques, and compare them. If the deviation of more 

than a reference value is detected, the signal is regarded as ‘failure’ or ‘degradation’. However it is 

difficult to carry out signal validation according to the scheme of Figure 1, because of the deficient 

sensors in BOP. Our unique alternative in Figure 1 is to use a BOP model and diverse signal sources. A 

BOP model is highly non-linear on the whole so that we cannot express its behavior by a simple state 

space model or an analytical model. Therefore authors considered BOP as a black-box model. In a black-

box model, the only behavior of the input and output signals is investigated. This approach corresponds to 

‘empirical modeling’ in Figure 1. 

Performance tests are executed according to authorized procedures, for example, ASME performance test 

codes (PTCs). When ASME PTC 6 that is the highest accuracy procedure is used for a performance test, 

we must collect 2 ~ 400 signals [18]. As a result of actual investigation, there is only one half of or two-

third of them installed permanently, and the others are installed and removed temporarily. If we have a 

suitable solution to solve the lack of sensors, we can reduce current workload. The signal validation 

explained above can be used as a solution because the empirical model in signal validation plays a role 

for the estimation of unmeasured signal.  

In this study, authors expanded the concept of signal validation to state analysis by integrating above two 

topics, signal validation and signal estimation. Figure 2 describes the concept of state analysis [19]. It is 

an expanded figure of Figure 1. The function f in Figure 2 corresponds to an empirical model in Figure 1. 

‘Learned state’ means the set of signals previously collected for the development of the empirical model. 

‘Observed state’ means the set of signals collected each performance test. ‘Estimated state’ means the 

estimated output of the empirical model when an observed state is inputted. If an estimated state and an 

observed state are the same within a reference value, we regard that there is no failed or degraded sensor. 

Otherwise we should check the reliability of sensors in detail. The learned states should be collected to 

cover normal behavior as well as abnormal behavior of a system. In actual problems, it is difficult to 

collect these learned states because we cannot control normality or abnormality of a system. In this case 

we usually use a simulation code. For the data generation of steam turbine cycle, PEPSE (Performance 

Evaluations of Power System Efficiencies) code was used. Figure 3 is the lumped model of a typical BOP 

in NPPs, which is constructed by the visual tool of PEPSE code. The PEPSE code generated the learned 

states with changing boundary parameters according to the suggestion of performance engineer’s guide 

[20]. From the results of the simulation, the data about total 28 parameters were collected.  

 

II.2. Statistical state analysis model 

We want to know the relation among signals that are collected in normal and abnormal system states. Of 
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course, we assume all the learned states are reliable. In this model, the relation among signals is described 

using correlation matrix and linear regression. Let’s assume the learned states gathered by the repeated 

PEPSE simulations are the universal set,  
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p is the number of parameters, 

N is the number of observations or the number of simulations.  

We can calculate correlation coefficient ijr  between two parameters using Equation (2), (3), and (4). 
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where kf  is the frequency of the observations, 

      kw  is the weight. 

Because the correlation coefficient is calculated for the universal set, 
ijr  represents the relation of 

parameters in all the system state. The magnitude of ijr  is proportional to the degree of correlation. In 

this study, the correlation among parameters is established by multivariate linear regression like Equation 

(5).  

ppiij xxxx ββββ +++++= ......ˆ 110
, ji ≠          (5) 

All of the ix s are the independent or explanatory variable and jx̂  is the dependent or response variable. 

We don’t need to use all the parameters to construct a correlation. Considering computing capability and 

actual applications, we should reduce the number of explanatory variables. The selection of the best 

parameters is based on the correlation coefficients. In this study, maximum three parameters were selected 

as the explanatory variables, and we used the adjusted 2R , 2
aR  as a criterion for the selection of the best 

parameters. 2
aR  is defined as Equation (6), 
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Table I shows the results when the response variable is the feedwater flowrate. Figure 4 shows the 

regression accuracy. Generally all of the correlations fall in ±3% of original feedwater flowrate. 

The empirical model based on the statistical regression is easy to make and its derivation process is clear. 

Sensitivity study is also possible about each explanatory variable. Therefore it is effective for the 

estimation of some important parameters. However it is impossible to accomplish state analysis for all of 

the signals because we should check the abnormality of the explanatory variables repeatedly. Also the 

result of regression is sensitive to the outlier so we need another robust method for the support of the 

statistical model.  

 

II.3. Hueristc state analysis model 

A lot of researchers have used neural networks for state analysis. The most advantage of a neural network 

is that (1) we don’t need to know the physical mechanism of a target system, (2) any system regardless of 

linear or nonlinear can be modeled, and (3) it has robustness. However we can use these advantages only 

when we select suitable input parameters, training method, neural network structure. First, we should 

reduce the dimension of input parameters for training efficiency and accuracy because there are a lot of 

sensors to be validated in BOP. Also we should prevent the loss of information during the reduction of 

input parameters. Additionally we need the method to localize the outlier that located outside a statistical 

distribution. The localization of the outliers means to prevent the deformation of a transformed domain by 

the outliers. This capability enhances the robustness of a neural network.  

In this study, wavelet analysis (WA) was selected as a pre-processor of a neural network. We call the 

special functions satisfying some conditions as mother wavelets and father wavelets. From the mother and 

father wavelet, we can derive other wavelet functions and scale functions. They construct orthogonal 

bases. A wavelet function, ab,ψ  and a scale function, 
ab,φ  are defined as Equation (7) and (8). 
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where ψ  is the mother wavelet and φ  is the father wavelet, 

b  is a translation coefficient, 

a  is a scale coefficient.    

If the translation coefficient and the scale coefficient are given as Equation (9), wavelets are discrete and 

construct orthogonal bases according to Equation (10) and (11). 
ja −= 2 , kb j2= ,             (9) 
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where Zkj ∈, , Z is integer. 

On the basis of Equation (10) and (11), we can do multi-resolution analysis. In multi-resolution analysis, 

we can analyze a function, f  in an arbitrary dimension, specifically dyadic dimension, without any loss 

of information. In other words, we assume f  is the approximation coefficients in a sufficiently higher 

resolution space. Then we determine the approximation and detail coefficients in projecting f  to lower 

resolution spaces like Equation (12). 

∑ ∑∑ +=
k j

kjkj
k

kkj dcf ,,,0, ψφ ,          (12) 

where kjc ,  is the approximation coefficient, kjd ,  is the detail coefficient. 

The approximation coefficient is defined as Equation (13) using the father wavelet, and the detail 

coefficient is defined as Equation (14) using the mother wavelet. 

∫ ⋅== kjkjkj ffc ,,, , φφ ,          (13) 

∫ ⋅== kjkjkj ffd ,,, , ψψ .          (14) 

The approximation coefficients represent the relation between a higher space and a lower space, and the 

detail coefficients represent the relation between a higher space and the compliment space of a lower 

space. A lower space has a dyadically reduced dimension comparing to a higher space according to 

Equation (10) and (11). By synthesizing these coefficients, the original data can be constructed 

completely without any information loss. We call the former method as wavelet decomposition and the 

later method as wavelet reconstruction. After all we do nothing but process the approximation and the 

detail coefficients instead of the original data. 

In this study, ‘haar’ wavelet was selected as the mother and the father wavelet. In Figure 5, the scheme of 

wavelet decomposition is shown. According to Figure 5, 28-dimension of the original data is reduced to 

4-dimension by selecting 3=j  and a total of 8 neural networks were prepared. Generally the only 

approximation coefficient is decomposed, but the detail coefficient is also decomposed to equalize the 

structure of the neural networks. This method is called wavelet packet analysis. We made 4-13-4 structure 

neural networks for training and testing. The training method was Levenberg-Marquardt back-

propagation, and Bayesian regularization method was adopted to prevent overfitting. Figure 6 shows the 

results of training and testing for the feedwater flowrate. All the testing cases were nearly accurate.  

Another testing was carried out after changing parameters intentionally, for the validation of robustness. 

Figure 7 shows the testing results when 80% of the original feedwater flowrate is inputted. The neural 

network with WA estimated the feedwater flowrate within ±3% of the original value even if the 

estimated values are under-estimated. To identify the effect of the outlier, Figure 8 shows the first 

approximation coefficient, AAA and the first detail coefficient, AAD of the original signals and the 

signals after changing feedwater flowrate. As shown in Figure 8, the detail coefficients are nearly the 
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same in both cases. In case of the approximation coefficients, the only single approximation coefficient, 

the mark q is changed. In the mean while, other approximation coefficients are also nearly the same. 

This means the outliers in the feedwater flowrate signals are localized. Therefore the neural network with 

WA could compensate the outlier on the basis of training effectively.  

 

III. Discussions and Conclusions 

 

This study is focused on state analysis for BOP performance tests of NPPs. State analysis includes 

expansive concept of signal validation. State analysis detects and isolates the signal collected from failed 

or the degraded sensors, and provides estimated signals instead of the original low-quality signals. 

In case of NPPs, the adoption of an empirical model was a unique alternative to achieve state analysis. We 

recommended the statistical model as one of the empirical models. The statistical model is based on 

correlation and regression among signals. Its advantage is that it is possible to construct an empirical 

model systematically, to calculate model uncertainty, and to apply to an actual system easily. However we 

need another supporting model since the statistical model is difficult to apply to the validation of all of the 

sensors and is too sensitive to the outliers in signals.  

The neural network was proposed as a supporting heuristic method of the statistical model. For the 

reduction of numerical calculation, WA was adopted as a pre-processor. WA was useful to reduce the 

number of the input and output dimension. WA was also superior from the viewpoint of the outlier 

localization. Because of this, the neural network with WA compensated the outlier in the signals collected 

from failed or degraded sensors effectively.  
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Figure 1. Concept of the signal validation proposed in NUREG/CR-6343 
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Figure 2. General concept of state analysis 
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Figure 3. PEPSE model for turbine cycle simulation (the number means the stream number in PEPSE 

code) 
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Figure 4. Regression accuracy of the feedwater flowrate correlation  
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Figure 5. Wavelet packet analysis for the training and testing of a neural network 
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Figure 6. Testing accuracy for the feedwater flowrate 
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Figure 7. Testing accuracy for the 80% feedwater flowrate 
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Figure 8. Comparison of the approximation and the detail coefficients under the outlier (Top: original data, 

Bottom: 80% of the feedwater flowrate) 

 

 

Table I. Results of correlation analysis for the feedwater flowrate (flowrate of stream 70, an explanatory 

variable consists of a stream number and sensor type) 

* 0β  
1β  Exp. Vari. 2β  Exp. Vari. 3β  Exp. Vari. 2

aR  SSE 

1  864.247 0.713 153 Pres.     31.731 48,583 

2  1369.243 0.693 153 Pres. 0.145 60 Pres.   38.120 44,037 

3 1087.324 0.664 153 Pres. 0.160 60 Pres. 2.603 72 Temp. 41.788 41,426 

* Number of explanatory variables 
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