2003

 $(Th,U)O_2$

The Measurement of Diffusion Coefficient of fission gas in (Th,U)O2

Abstract

Post irradiation annealing tests were performed to obtain the Xe-133 diffusion coefficients in uranium dioxide (UO_2) and mixed thorium-uranium dioxide $[(Th,U)O_2]$ fuels. Specimens were a single-grained UO₂, a polycrystalline UO₂, and a polycrystalline (Th,U)O₂. The (Th,U)O₂ specimen was a mixture of 35% ThO₂ and 65% UO₂. Each 300mg specimen was irradiated to a burnup of 0.1 MWd/t-U. Post irradiation annealing tests were performed at 1400°C, 1500°C and 1600°C, continuously. The xenon diffusion coefficients for the near stoichiometric single-grained UO₂ agree well with the data of others. The xenon diffusion coefficients in the polycrystalline (Th,U)O₂ are about one order lower than those in the polycrystalline UO₂. The xenon diffusion coefficient in the (Th,U)O₂ increases with the increasing oxygen potential of the ambient gas.

	1960	,		UO_2	가	UO ₂
		[1,2,3,4,5,	6]. ,	,		
		. Turnbull[4]	Lewis ^[7]			
		가				
					가	
				,	·	
					7ŀ	
					- 1	
	Olande	er[8] Uffelen[9]			
		가			. ,	
(Th,U)O	2	가	가			
	. (Th,U	\mathbf{U}) \mathbf{O}_2				, ,
				[10,11,12	, 13].	
				(Th	UO_2	
	UO ₂				, 2	
	2	가	UO ₂ (Γh.U)O ₂ xenon		
		UO ₂ (Th.U)O ₂	, , , , 2	가	
			2			
			Ζ.			
0.1						
2.1						
		UO	UO			
UO		UU_2	$, 00_{2}$	(11,0)	\mathbf{O}_2	
UO_2						
	[14].	UO_2	$(\text{Th}, U)O_2$			
	(Th U)O ₂	ThO_71 359	65% UO ₂ 7F 65%			
	[12]	;]1				
	-12	,	UO			
			00_2	$(11,0)O_2$		
		(Emmine 1 1		1		
	. ,	(Equivalent sphe	(a)	TIIIM	•	

- 1 (Th,U)O₂ () ()

- 2 () 가	가 ()	
-----------	------	--

-1			•		HTS
	(Th,U)O ₂		U-23	5	
		30			

- 1

					(MWd/t-U)
UO ₂ (S-1,S-2,S-3)		20	95%	23±2 µm	0.1~0.13
UO ₂ (P-U-1,P-U-2,P-U-3)	3	20	97%	8.1±0.5 μm	0.07~0.09
(Th,U)O ₂ (P-Th-1,P-Th-2)	3	30	97%	7.5±0.5 μm	0.1

2.2

가

가

[].

가

가

가 가 30 Xe-133 가 3600 (1) Booth [16]. t^{1/2} 가 (1) f \mathbf{f}^2 가 t

.[17,18]

 $f^2 = \frac{36D}{a^2\pi}t$ (1)

(1)

ORIGEN-2 . 가 Xe-133 . 가 가 Xe-133 . 가 가 가 I-132(668keV,772keV) La-140(815keV) 3 . Cs-137(662keV) ORIGEN-2 ORIGEN-2 . . 가 Xe-133 Ba-133(81keV-33%) . Ba-133 가. Xe-133 (1) . 가 10%, 0.1% . 3가 . 3.

O/M , 20 kJ/mol . 7[†] -370kJ/mol (+ -10%), -250kJ/mol(+ -0.1%) -110 kJ/mol(+)

.

0.16

х

,

0.0035

0.0030

0.0025

0.0020

0.0005, 0.01

- 5

(P-U-1, P-Th-1)

(S-1)

가

-4

•

- 2

가

		(m²/s)*			
		1400 °C	1500 °C	1600 °C	
S-1	-370kJ/mol	1.89 X10 ⁻¹⁹	5.35 X10 ⁻¹⁹	1.91X10 ⁻¹⁸	
S-2	-110kJ/mol	1.1 X10 ⁻¹⁷	3.45 X10 ⁻¹⁷	1.95 X10 ⁻¹⁶	
P-U-1	-370kJ/mol	3.27 X10 ⁻¹⁸	1.13 X10 ⁻¹⁷	3.45 X10 ⁻¹⁷	
P-U-2	-250kJ/mol	3.58 X10 ⁻¹⁷	8.15 X10 ⁻¹⁷	2.37 X10 ⁻¹⁶	
P-U-3	-110kJ/mol	6.32 X10 ⁻¹⁵	1.13 X10 ⁻¹⁴	1.46 X10 ⁻¹⁴	
P-Th-1	-370kJ/mol	2.45 X10 ⁻¹⁹	1.7 X10 ⁻¹⁸	6.45 X10 ⁻¹⁸	
P-Th-2	-250kJ/mol	5.02 X10 ⁻¹⁸	1.68 X10 ⁻¹⁷	6.03 X10 ⁻¹⁷	

.

.

-2

•

* measured diffusion coefficient contains less than 20% error.

-2		UO ₂	U	O ₂		(Th,U)O ₂
1	UO ₂			가		
가 .						
		4.				
			-6(a)			
	가 1000			S-1		
Davies and Long[20]		Une[2]	10		. Une	
				4MWd/t-U	. Une	
가		. MacEwa	n and Stevens[3]	0.4 MWd/T-U		
			(Vacai	ncy cluster)가		
xenon						
	0.1MWd/T-U					
Davies and Long[20]		가 0.8MWd/t-U				
. Turnbull[21]	$1.7 \times 10^{19} \sim 3.2$	$\times 10^{19}$ fissions/cm ³ (6	50~1,220 MWd/t-U)			가

가

trap

•

'a' 'a' . UO_2 가 UO₂ 가 20 . ' a' UO_2 ʻa' 가 ~0.2mm . . Van Uffelen[9] Olander[8] 가 가 가 . 'a' 가 UO_2 $(Th,U)O_2$. , 가 . $(Th,U)O_2$ 10 UO_2 • . $(Th,U)O_2$ 427kJ/mol 가 307 kJ/mol UO_2 가 • $(Th,U)O_2$ UO_2 • 가 4+ 가 $(Th,U)O_2$ xenon UO_2 $(Th,U)O_2$ 가 가 . . 가 Killeen and Turnbull[4] xenon 가 Lidiard[22] Sharp[23] . 가 • Matzke[24] xenon - (Tri-vacancies) 가 UO₂ UO_2 가 가 가 가 xenon . UO₂ xenon 가 Frenkel Schottky . 가 가. xenon 가 65% UO₂7 35% $(Th,U)O_2$ 가 UO_2 Schottky Frenkel . $(Th,U)O_2$ 가 10 ThO₂ UO_2 35% ThO_2 •

1. D.R.Olander. 'Fundamental Aspects of Nuclear Reactor Fuel Elements.', TID-26711-P1.ERDA (1976)

2. K.Une, I.Tanabe, M.Oguma, J.Nucl.Mater. 150(1987) 93

3. J.R.MacEwan, W.H.Stevens, 'Xenon diffusion in UO2., J.Nucl.Mater.11 (1964)77

- 4. J.C.Killeen, J.A.Turnbull, 'An experimental and theoretical treatment of the release of Kr-85 from hyperstoichiometric
- uranium dioxide.', Proc. Sym on chemical reactivity of oxide fuel and fission product release, Berkeley, UK(1987)
- 5. Hj.Matzke, 'Radiation enhanced diffusion in UO2 and (U,Pu)O2', Radiation Effects, 75 (1983)317

6. J.A.Turnbull, C.A. Friskney: J.Nucl.Mat. <u>107</u>(1982)168

7. B.J.Lewis, B.Szpunar,' Modelling of Fuel Oxidation Behavior in Operating Defective Fuel Rods.', seminar proceedings on Fission Gas Behavior in Water Reactor Fuels, Cadarache, France (2000) 293

 D.R.Olander, 'Combined Grain boundary and Lattice Diffusion in Fine-Grained Ceramics.' Advances in Ceramics <u>17</u> (1986) 271

- 9. D.R.Olander, P.Van Uffelen, 'On the role of grain boundary diffusion in fission gas release.', J.Nucl.Mat. 288 (2001) 137
- 10. T.Matsui, K.Naito, 'Oxygen potential of UO_{2+x} and $(Th_{1-y}U_y)O_{2+x}$ ', J.Nucl.Mater. <u>132</u>(1985)212.
- 11. M.Ugajin, J.Nucl.Mater. <u>110</u>(1982)140.
- K.Bakker, E.H.P.Cordfunke, R.J.M.Konings, R.P.C.Schram, 'Critical evaluation of the thermal properties of ThO2 and Th_{1-y}U_yO₂ and a survey of the literature data on Th_{1-y}Pu_yO₂',J.Nucl.Mater <u>250</u>(1997)112
- J.R.Springer, E.A.Eldridge, M.U.Goodyear, T.R.Wright, J.F.Langedrost, Battelle Memorial Institute Report BMI-X-10210,1967
- 14.,6,' UO_2 Xe-133',(2002)15.,5,'(Th,U)O_2:',(2002)

 A.H.Booth, 'A Method of Calculating Fission Gas Diffusion from UO₂ Fuel and Its Application to The x-2-f Loop Test.', CRDC-721 (1957)

17. Hj.Matzke, 'Gas release mechanisms in UO2-A critical review.', Radiation Effects, 53 (1980) 219-242

- S.Kashibe, K.Une, 'Effect of additives (Cr₂O₃, Al₂O₃, SiO₂, MgO) on diffusional release of Xe-133 from UO₂ fuels.', J.Nucl.Mater <u>254</u>(1998)234-242
- 19. T.B.Lindemer, T.M.Besmann,' Chemical thermodynamic representation of $UO_{2\pm x}$.', J.Nucl.Mater. 30(1985)473-488
- 20. D.Davies and G.Long, AERE Rep.No.6267(1969)
- 21. R.M.Cornell, J..A.Turnbull, J.Nucl.Mat. 41(1971)87
- 22. A.B.Lidiard,' Self-diffusion of uranium in UO2.' ,J.Nucl.Mater 16(1966)106
- 23. J.V.Sharp, AERE Report No.6267 (1969)
- 24. Hj.Matzke, 'Diffusion in Doped UO2.', Nuclear applications. 2(1966)131