가 UO₂+5wt%CeO₂

Pulverization Characteristics of UO₂+5wt%CeO₂ Pellets by using Microwave Heating

Abstract

The Isothermal oxidation experiments of $UO_2+5wt\%CeO_2$ pellets were carried out in the temperature range between 300 and 800 in air atmosphere in order to study the pulverization behavior in microwave heating, and the results were analyzed and compared with those of the samples pulverized by using the conventional electrical heating. MO_2 pellets in the microwave was quickly oxidized in the temperature range between 400 and 500 , and the oxidation was found to be accelerated with increasing the flow rate of air. The average particle size of MO_2 powder pulverized in the microwave was increased with increasing oxidation temperature.

2003

1.

(tube) . , 가 muffle furnace

TGA .

2 -2.

	UO ₂	CeO ₂	5wt ^o	% 가		UO ₂	
BNFL(British	Nuclear Fuel	Ltd.) IDF	R(Integrated	Dry Rou	ite)		
		2.24 <i>µ</i> m	2.27㎡/g		O	/U 2	2.13
. CeO ₂ (Aldrich)		가 6.6	6μm,	99.	9%		
		$MO_2(UO_2+5w)$	vt%CeO ₂)	Tur	bula	2	,
attrition mill	2		,		4g		zinc
stearate가		3 ton/cm ²		,		1700	4
H_2/N_2							가
	, ethanol						(water
immersion)		10.4	8g/cm³(±0.03	3) .	,		linear
intercept		8μ m					

2 -3.

	가						MO ₂	
		(cavity)	가	(applica	ator)			
		Ar	200cc	:/min		가		
		1	0 /min	고 가		,		
Ar		(air)						
		(2~4 hours),	, (a	air) (1	00~500	cc/min)	(300~80	0)
		가					가	
				Malvern	[U.K	.] MasterS	izer/E	
		, E	BET					

3.

가 $MO_2(UO_2 + 5wt\%CeO_2)$ (oxidation) 2 . 가 400~500 가 , MO₂ 가 . , 가 500 400 [4-6] . 가 UO_2 , Peakall Antill [4] . 350~1000 500 . MO₂ 200cc

				3			가 3	00			
가					, 400~	500					,
가										30	0
	가	, 400	500		가					. N	1O ₂
		가	가							(M ₃ O ₈)	
	(average	e particle s	size)		4			가	가		
	가	30	0			10 <i>µ</i> n	n	,		가	
			가			가					
MO ₂			가	가						(specific	surface
area)		:	5			가				2	200~500
cc/min	ı										
,		100cc/mir	1	500						3.2㎡/g	
7	የት			가				2	400	1.4n	n²/g
Ę	500	1.0㎡/g		가							
Iwasał	ki [7]	ι	JO ₂								
		가		400)		MO_2				
		6			가					7	ŀ
	. MO ₂			, フト		400	2			. 800	
50		2		·			7				
								[8]			
OREO	X(Oxidat	tion and Re	duction	of Oxide	fuel)						
	,				가						
4.											
		가	Ν	/IO ₂							
	,	flow ra	ate		,			가	(가)	
1.		가		400~500)			가		,	
		MO_2	5	? ት		가					

2. 가 가 가 가, 가 가

3. 가

Acknowledgement

[1] C. Y. Joung, et al., Procceedings of the Korean Nuclear Society Spring meeting (1999)

- [2] C. E. Holcombe, Am. Ceram. Soc. Bull., 62(1983)1388
- [3] Committee on microwave "Microwave processing of materials" (1994)49-58
- [4] K. A. Peakall and J.E. Antill, J. Nucl. Mater., 2[2](1960)194-195
- [5] K. K. Bae, et at., J. Nucl. Mater., 209(1994)274-279
- [6] R. C. Hoyt, et at., ESG -DOE -13276, Jul. 1979
- [7] M. Iwasaki, et al., J. Nucl. Sci. & Tech., 5[12](1968)652-653
- [8] B. G. Kim et al., J. Kor. Ceram. Soc., 32[2](1995)471-481

.

Fig. 1 Schematic diagram of multi-mode cavity used in pulverizing test.

Fig. 2 Variation of weight gain(%) of MO₂ oxidized as a function of temperature with different flow rates for 2hours.

Fig. 3 Variation of weight gain(%) of MO₂ oxidized with oxidation time and temperature in air(200cc/min).

Fig. 4 Comparison of average particle size of MO₂ oxidized for 2hours in air(200cc/min) for different heating methods.

Fig. 5 Comparison of specific surface area of MO₂ oxidized for 2hours for different heating methods.

(a) Microwave heating

(b) Electrical heating(T,G)

Fig. 7 SEM photographs of MO₂ powder oxidized at 400 and heat-treated at 800 by using microwave heating