Study on the Simulation and Analysis on Corrosion Products of Piping Materials in NPP

Abstract

High temperature - high pressure apparatus was developed for simulating nickel ferrite corrosion products. Nickel base alloy(Inconel 690) and iron base alloy(SA106 Gr.C) in the corrosion product generator were corroded at 270 . Ni ions and Fe ions dissolved by corrosion reaction were transported to the corrosion product accumulator through high pressure balance stainless steel tube.

To evaluate the property of simulated corrosion products, test solution analysis, scanning electron microscope observation, EDX analysis, and X-ray diffraction analysis were performed. SEM observation of corrosion product showed the typical micro-structure of oxide layer and proved that the corrosion product layer continuously grew in high temperature solution. According to EDX analysis, the chemical composition of simulated corrosion product was Fe: Ni: Cr = 7.48: 1.21: 1.32 and micro-structure of corrosion products was mixed ferrite spinel structure (Ni_{0.3}Cr_{0.4}Fe_{2.3}O₄).

2003

1. 가 1

.

(Ni_xFe₃₋

•

•

xO₄)가 [1]. Ni/Fe 가 1 x=1 NiFe₂O₄가 Ni/Fe 가 0.5 x<1 Ni/Fe 가 0.5 가 NiO [2].

2.

 1.
 ブ・
 ブ・

 ブ・
 ブ・
 ブ・
 ブ・
 ブ・
 ブ・
 ブ・

 ブ・

, 가

,

.

270

2

•

anodic polarization . 가 가 가 . steel cathodic protection 304 stainless steel 가 activation holder holder

304 stainless

3

.

.

anodic

가

Inconel

.

heating tape

가 • loop 10cc/ . 가 가 loop loop pipe .

2.

•

. 가 . 2.5 liter

690 SA 106 Gr.C 가 SA 106 Gr.C Inconel 690 1

, loop . 270 , 300 magnetic pump loop 10cc/ ,

potentiostat 가 , 가 potentiostat 가 , 가 1.5mA 가 0.758mA .

97 Inductively Coupled Plasma Mass Spectrometer(ICPMS)

EDX, X - ray . 3. 1.

ICPMS , 2 ,

, SA106 Gr.C Inconel 690 Fe, Ni, Cr ,

/ 0.57 가 . ICPMS

2. SEM

, 4 . フト .

・ 5 . 가

가

.

EDX 7 . SEM SEM EDX carbon tape Fe: Ni: Cr 가 78: 20: 2 $Ni_{0.6}Fe_{2.4}O_4$, Ni/Fe 가 0.5 NiFe₃O₄ Ni/Fe $Ni_xFe_{3-x}O_4$ (x < 1), Ni/Fe 가 0.5 가 0.5 NiO [2]. 가 0.16 Fe: N: Cr 7.48: 1.21: 1.32 Ni/Fe $Ni_{0.3}Cr_{0.4}Fe_{2.3}O_4$ 가 mixed ferrite . Cr

,

,

304 stainless

steel

8 EDX . Si , Fe: Ni: Cr 7.38: 0.64: 1.65 . $Ni_{0.2}Cr_{0.5}Fe_{2.3}O_{4}$ 가 mixed ferrite

•

.

304 stainless steel

. 가 9 . EDX SiO_2 가 Si mixed ferrite Fe Ni, Cr

. 가 Si SiO_2 , 가 EDX . 3 .

4. 270

, . . anodic current 가 Rulon LR

•

/ 0.57

				Fe: Ni: Cr	7.48: 1.21:
1.32	Ni/Fe	가 0.16	$Ni_{0.3}Cr_{0.4}Fe_{2.3}O_4$	가	mixed ferrite
			Cr		

		304 sta	inless steel				
EDX				가			X - ray
					10		X -ray
			EDX				
	,	noise				EDX	

[1]. KEPRI, 1 , KRC -90N -J04, 1993

,

[2]. A.K. Strasser, J. Santucci, "Corrosion Product Buildup on LWR Fuel Rods", EPRI NP -3789, 1985

"

"

[3]. Y.L. SANDLER and R.H.KUNIG, Nucl. Sci. Eng., 77, 211 (1981)

가

.

.

-

	1.		Inconel 690			SA106 Gr.C						
	с	Mn	Р	S	Si	Cr	Ti	AI	Cu	Со	Ni	Fe
SA106 Gr.C	0.19	1.22	0.009	0.007	0.27	0.05	-	0.029	0.013	0.003	0.11	Bal.
Inconel 690	0.02	0.26	0.004	0.001	0.33	29.5	0.32	-	_	0.012	Bal.	10.4

2.			
Element	Mass	Distilled Water	Test Solution
Cr	53	0.1080 ppb	105.10 ppb
Mn	55	0.0807 ppb	5.68 ppb
Fe	57	0.3026 ppb	70.84 ppb
Ni	60	0.0844 ppb	40.80 ppb
Cu	63	0.0374 ppb	16.02 ppb
Zn	66	0.0478 ppb	56.82 ppb

	3.		ED			
Elements	#1 (Wt%)	#1 (At%)	#2(Wt%)	#2(At%)	#3(Wt%)	#3(At%)
С	16.50	29.10				
ο	33.98	44.97	42.30	61.99	47.86	62.71
AI	3.08	2.41	6.41	5.57	3.98	3.09
Si	12.73	9.60	24.53	20.48	40.31	30.09
Ca	7.37	3.89	3.91	2.29	7.85	4.10
Cr	3.25	1.32	3.66	1.65		
Fe	19.73	7.48	17.59	7.38		
Ni	3.36	1.21	1.60	0.64		

#1. #2.

#3.

3.

(a) 4.

(a)×50, (b)×10,000

(a) ×50, (b) ×10,000

6.

(a) ×50, (b) ×2,000

