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Abgract

In this peper, asoftware sensor using ablack box modding method hes been deve oped to monitor exiging hardware
sensors The black box modding is accomplished by a fuzzy inference sysem that is equipped with an automaic design
dgorithm thet automates the sHection of the input Sgnds to the fuzzy inference sysem and its fuzzy rue generdion
induding parameter optimization. The propossd Software sensor was goplied to monitoring the fesdwater flowratie The
fesdweter flowrate is meesured by Venturi meters in most current pressurized water reectors (PWRS). These meters can
decresse the thermd parformance of nudear power plants because the fesdwater flowrate can be over-messured because of
thar fouling phenomenathet meke corrosion products accumulate in the feedweter flow meters due to long-term operation.
The proposad software sensor was veified by usng the numerical smulaion data of MARS code for Kori nudear power
plant unit 1 and dso, the red plant data of Y onggwang nudear power plant unit 3. In a result usng the numericd
dmulation data, the rdaive two-9gma errors are 0.11% and the rddive maximum arror is 0.22% In another result usng
the red plant data, the rdative two-9gma erors are 0.65% and the rdaive maximum aror is 2.73%. These erors ae 0
amd| thet the proposed method can be goplied successully to vdidate and monitor the exiding fesdwater flow meters

1 Introduction

Recertly, many researchers have paid much dtention to software sensors or inferentia senging, which use other
reedily availale on-line messurements because these software sensors can dther replace the hardware sensors or be usd
in pardld with them to provide redundancy and verify whether the hardware sensors are drifting (Choi and Park, 2001;
Régnier et d. 1996; Linko, Luopa, and Zhu, 1997; Chéruy, 1997; Masson et d., 1999). Software sensor design conaigts of
building an edimate of some quartity of interes. An edimate of a phydcd vaiade can be accomplished through
mechanidic mathematicd modding or black-box modding. Thet is there are tow kinds of software sensors modd -based
and data-besad. When the process modd for evaduating the process variablesisapriori unknown or difficult to modd like
the deam generaor sysem a hend, the prablem can be gaed in terms of datarbasad black-box modding. The fuzzy
inference sysem iswiddy usad for this black-box modding. Therefore, in this work, a fuzzy inference sysem equipped
with an automatic design dgorithm is proposed to design hardware sensors thet can replace a physical messurement or
vaidate an exiging one That is, the sdection of the input Sgndsto the fuzzy inference sysem and its rule generation ae
autometed to optimally esimete rdevant physicd variales

Thamd resctor power is typicaly evauaed by sscondary sysem cdorimetric caculaions thet srongly depend on
the accuratle messurement of fesdwater flowrate, and dsp, is directly propartiond to the feedwater flowrate. Therefore, it is
vay important to accurately meesure the fesdwater flowrate in order to monitor the thermd performance of anudeer power
plant and alot of ressarchers have been interested in overcoming the ineccurate messurement proldlem of the fesdwater
flowrate (Kaveklioglu and Upedhnyaya, 1994; Heo, Choi, and Chang, 2000). Venturi meters are usad to meesure the
fesdwater flowrate in mogt current pressurized water reectors (PWRS). These meers can induce messuremant drift due to
corroson product buildup near the meter arifice because of longterm operation. This fouling increeses the messured
pressure drop acrass the meter, which in turn resultsin an overesimation of the fesdwater flowrate. Therefore, inthis paper,
a deve oped software sensor s goplied to messuring the fesdwater flowrate by comhbining an empiricd data bassd modd
udng afuzzy inference sysem and other partid messurements of the reector system.

" Current Address SAMCHANG ENTERPRISE CO,, LTD



2. A Software Sensor Using a Fuzzy I nference Sygem

Therearetwo types of goproachesin developing software sensors Oneisamethod that estimates reguired perameters
on the bads of a determinisic modd and the other is the black-box modding method thet depends only on the messured
vaues Bladk-box nodding gpproaches such as atificid intelligence are more favored because they can modd complicated
proceses which are difficult to be destribed by andyticd and mechanisic methods Therefore, bladk-box modd
gpproaches for building software sensors have widdy been atempted. Also, recently, atifidd intdligence such as fuzzy
inference systems and atificdd neurd networks has been paid much atention from many reseerchers because atificad
intdligence can modd complex nonlineer sysems eesly (Chal and Park, 2001, Linko, Luopa, and Zhu, 1997, Mason &
d., 1999).

Inthiswork, afuzzy inference system will be used to design a software sensor. The fuzzy inference sysem combines
linguigticand numerical information (mainly input-output pairs). Since the fuzzy inference system is congructed from fuzzy
if-then rules, linguidic informetion can be directly incorporated and on the other hand, numericd information is
incorporated by training the fuzzy inference system to match the target input-output pairs. The main advanteges of the fuzzy
inference sysem are the possihility of implementing rule of thunb experience, intuition, heurigtics and the fact thet it does
not nesd amathematica modd of aprocess

The inputs and outputs of the fuzzy inference sydem to be used as Software snsors are red-vaued vaiadles
Therefore, in thiswork, indtead of consdering the Mamdeani (1975) typefuzzy if-then rulesin theform which requirestime-
conauming defuzzfication caculaion, a Tekegi- Sugeno (1985) typefuzzy inference sydemisused wherethe | -th rule can
be destribed asfallows

If x, isA; ANDL AND X, is A, then ¥ is f'(x,L , X,), Q)
where

X; =theinput linguigtic vaiableto the fuzzy inferencesytem (J =1, 2, ..., M),

A, =themembership function of the ] -thinput variable for the antecedert of the | thrule(i =1, 2, ..., n),

¥ =theoutput of the i -th rule
Here M isthe number of input varigblesand N the number of fuzzy rules. Thereis generdly no spedid redtriction on the
shepe of membership functions. In thiswork, the symmetric Gaussan membership function is used to reduce the number of
the parametersto be optimized. f' (X, L , X;,) isapolynomid intheinput variables but it can be any function aslong &
it can gopropriatdy describe the output of the fuzzy inference system within the fuzzy region spedified by the antecedert of
therue When therule output is of thefallowing form:

frL Xy = é g;X; 1, @
j=1
where
0; =theweighting value of the j -thinput onthe i -th rule output,
I, =thebiasof the i -th output,
the fuzzy inference sysem to be used in thiswork is called afirg-order Tekagi- Sugeno (1985) type fuzzy modd sncethe
output of anarbitrary i -thrule, f g isrepresented by the firg-order palynomid of inputsasgivenin Eg. (2).

The output o afuzzy inference sysemwith N fuzzy rulesis aweighted sum of the consequent of dl the fuzzy rules
Therdfore, the software sensor output estimeated by the fuzzy inference sysemisgiven by:
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The superscript | in Eq, (3) indicates thet the parameters are rlated to the i -th rule and the vedtor d s the conseouent
parameter vector thet should be optimized by the training methods that will be described in next subsection.

3. Automatic Desgn of a Software Sensor

If the input Sgnas to the fuzzy inference system to be used as a Software sensor are sdected and its fuzzy rules are
generated, the design of asoftware sensor is completed. Therefore, amethod that autometes the input sdlection and the rule
generation (rule number determination and itstraining method) will be described b ow.

3.1 Optimization of Input Sgnals and Fuzzy Rule Nurmber

The number of vaiddles to be input to the fuzzy inference sysem has to be optimized for severd reasons Fird,
irrdevant inputs will result in an ungabdle modd. Thus it becomes important to use only high information predictors.
Sacondly, Snce the generdization may degrade if colinearity is present among the variadles it is necessary to remove
highly corrdated variables. Findly, when building a black-box modd with many input variadles, a large number of
obsarvations are reguired to goen the complete input goece. The number of required obsarvations grows exponertidly with
the number of input variables, which mekes adimenson reduction essentid to obtain agood modd. In addition, sncethe
number of fuzzy inference rules depends on the number of sdlected inputs it is reguired to sdect the optimum number of
rulesfor sdected inputsin order to prevent overfitting and underfitting problems (Na et d., 2003).

Gendlic dgorithms gart from meny points Smultaneoudy dimbing meany peeksin pardld, and hence the probebility
of finding afdse peek is reduced compered to the conventiond methods that movefrom one point to anather. Accordingly,
gendlic dgoarithms are less susoeptible to being Studk at locd minima than conventiond seerch methods (Goldoerg, 1989;
Mitchell, 1996). Also, the genetic dgoarithm is the mos ussful method to solve optimization problems with multiple
objectives Therefore, it is proposad that a gendtic dgorithm will be goplied to sdect proper input Sgnds and to detlermine
the optimum number of fuzzy rles In gendlic dgorithm, the teem chromosonre refers to a candidate solution thet
minimizes a cod function, generdly encoded as a bit dring. As generaiion proceeds, populations of chromosomes are
iteratively dtered by biologicd mechaniamsingoired by naturd evolution such as sdection, crossover and mutation.

The genetic dgoarithms require a fitness function that assgns a score to each chromosome (candidete solution) in the
current populaion. In this paper, afitness function thet eval uates the extent to which each candidate solution is sLitable for
the multiple objectives such as amdl maximum error, smdl totd squared eror, the smdl number of input variddles and
the smdl number of rules, issuggested asfalows (Naet d., 2003):

F =exp(- mE, - mE, - mE; - mE,), @

whae m, m,, My, and M, aretheweighting coeffidents and E;, E,, E;, and E, arethe sum of squared erors, the
maximum absolute eror, the number of input variables, and the number of fuzzy inference rules, respectively, defined es
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ES = Ninput; (7)

E4 = Nrule- (8)

y(K) and Y(K) denotetheactudly messured sSignd and the signdl etimeted by a software sensor, respectively. Therefore,
the optimization objectives of the genetic dgorithm are to minimize the sum of squared arrors, the maximum aosolute error,
the number of used input Sgnas and the number of fuzzy inference rules



Snce ganetic dgarithms are computaiondly expendve, it is necessary to reduce the computation time of genetic
dgorithms. A modified genetic dgorithm proposad in the literature (Na et ., 2003) will beused in thiswork. It ispossble
to reduce the computationd time by lowering the probahility of sdecting the inputsthat are dmost not rdaed to the output,
though much rdated tosome other inputs. Note thet the corrdation coefficient matrix of the origind data st isegud to the
covaiance mdrix of the daa efter the data have been dandardized. This corrdation matrix indicates how dosdy the
varigbles (Sgnals) linearly depend on each ancther. That is, the high spedific (1, j) component of the correlation metrix
means thet the two corresponding (1 -th and | -th) input varigdles are dosdy rdaed to esch other. The corrdation
codffidents between the input variables and the output varidble are usad to initidize the input Sgnds selection bits of the
chromosomes of the genetic dgorithm (refer to Hg. 1). A dhromosomeis encoded as abit string which cond s of two perts
of hitswhere oneis rdated to the input Sgnds selection and anather isrdaed to the fuzzy rule number. Theinput sSgnas
sdection pert is compaosad of the same bit number as the number of acquired usable input variabdles, and one 'L in this part
represents thet the corresponding input Sgnd is sdlected and zero '0' represents thet the corresponding input Sgnd is not
Hected.

Explaning this processin detal as shown in FHg. 1, the corrdation degree (dotted line) between the output (arde) bit
and the sdected input (triangle) bit has to be as large as possble and the correlation degrees (solid lines) between the
sdected input (triangle) bit and the possble inputs (cross) bits have to be as smdl as possble To run a conventiond
genetic dgoarithm for input section, each bit of the dhromosomesis usuialy randomly assigned one or zero which represant
thet the corresponding input (bit) is sdlected or nat, respectively. However, in this modified gendlic dgoarithm, thereisa
high probahility thet the corresponding (triangle) bit is assigned one in case a cordation between the spedific input
(tiangle) and the output is high and corrdations between the spedific input (triangle) and the possble inputs (cross) are
low. On the contrary, there is a high probatility thet the corresponding (triangle) bit is assgned zero when the corrdation
between the ecific input and the output is low and the correlations between the spedific input (triangle) and the possible
inputs (cross) are high. This hdpsto reduce the computationd time by reducing the prabaility of selecting the inputs thet
aredmog not related to the output, though much rdated tosome other inputs. Although the corrdation codfficient andysis
isnat eble to determine the nonlinear rlationship between the input varigbles and the output varigbles, Sncethe corrdation
andyss is usad once & fird or intermittently; the genetic dgorithm is adle to suffidently compensate for the nonlinear
relationship during afew dozensof generdtions

3.2 Fuzzy Rule Optimization

Conventtiond optimization dgorithms induding a back-propagation dgorithm are susceptibleto being Suck a locd
minma. Therefore, in this work the genetic agorithm that prevents the local minimum problem is used to optimize the
fuzzy rules (membership parameters). However, Snce the genlic agorithm requires much computaiiond time if there are
many paramees bang invaved, the gendic dgarithm is combined with a leest-squares dgorithm. Thus, the genetic
dgorithm is ussd to learn the antecedent parameters (center podtion and sharpness of membarship fundiions), and the
leest-sguares dgarithm is usad to solve the consquant parameters G and 1 (the polynomid codffidents of the
consaouent part).

Therefore, the gendtic dgorithm is used to sdect the input Sgnds and the rule number of the fuzzy inference system
and dsp, is usad to optimize the fuzzy rulesto be destribed in this subsection. The objective of the gendlic dgarithm as a
prodemof fuzzy parameters optimization isto minimize the overal sum of squared errors and the maximum absolute error
(refer to Egs. (4) through (6)), which resultsin achieving the membership function optimizeation.

If some parameers of the fuzzy inference system are fixed by the gendtic dgorithm, the resulting fuzzy inference
sysdem can be destribed as a svies of expandons of some bed's functions. Since this bed's function expansion is lineer in
its adjugable parameters, the least-sguares method can be used to determine the remaining paramelers Fom a totd
number of N input-output training data that are target values, the consequent paramgters are chosen to minimize the
difference between the target vaues and the edimated vaues
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Using Eq. (3), the equetion for minimizing the cost functionisasfalows
y=Waq, (10)

where
qz[qllL qnlL L qlmL CInm rlL rn]T;
VV=[W1W2L WN]T,

Yvil ol vil

_ _ _ T
Wk=[WleL w'x L L Wx, L W'x, W't W', k=1,2L,N,

y isthe output datavector, d isthe parameter vector, and thematrix W indudestheinput data

The output of the fuzzy inference system is represented by the N (M+2)n -dimendond marix W and the
(M+2)n-dmensiond parameter vector d . The parameter vedtor d in Eq. (10) is solved by using the pseudo-inverse of
themarix W asfdlows

a=(wrw)'wTy (11)

The process for automaticaly congructing the structure of the fuzzy inference systlem is described in Hg. 2. Frg, the
input sgnas Hection hitsof theinitid chromosomes are generated by using the corrdation coefficient metrix to reduce the
computtationd burden of the genetic dgorithm and its rule number bits are dlocated with more priority thet their decoded
vaue becomes a high number if the number of sdected inputsislarge. An outer loop for the sdection of input Sgndsand
rule number goes round until gpecific condiitions are met. Also, in every input Sgnas and rule number section step (outer
loap), an inner loop for fuzzy rules optimization goes round repeatedly until pedific conditions are met. In addition, in
every input dgnds and rule number sHection dep a pat of chromosomes with vay low fitness is replaced by the
corrdaion andyss

4. Application to Fesdwater Flowr ate Edimation

The developed software sensor was gpplied to monitoring an exising venturi meter which meesures the fesdwater
flowrate. The proposad method was verified through two gpplication cases Fird, the proposad method wias gpplied to the
numerica Smulation deta of the load-decregse trandents in Kori nudear power plant unit 1usng aMARS code (Leeet d.,
1999) thet is a unified verson of COBRA/TF and RELAPYMOD3. Second, the proposed method was goplied to the red
plant darting data of Y onggwang nudear power plart unit 3. The software sensor using a fuzzy inference sysem was
automaticdly sructured using a hdf of dl the acquired data (training deta) in the training stage and wss verified using the
remaining deta (verification data) in the verification Sage

Fgures 3 and 4 show the performance results of the proposad method for a deta set acquired through numericd
dmuldions of the computer code FHgure 3 shows the performance reults for the training data from the numericd
dmulaion. Hg. 3@ shows the messured fead flowrate and its edimetion eror. FHg. 3(b) shows the histogram of its
edimation error. The higogram resembles the Gaussan digribution. In this figure, it is shown thet the rdaive maximum
aror compered with the rated vaue (469.01 kg/sc) is 0.15% and the rddive two-sgmaerror 0.11%. Fgure4 shows the
performance results for the verification deta Fg. 4(8) shows the messured fesdwater flowraie and its edimation error
which is amdl enough. Fig. 4(b) shows the higogram of its esimation error. In this figure, it is shown thet the rdaive
maximum aror is 0.22% and the rdaive two-Sgmaeror 0.11% The results for the verification deta are the same as theat
for the training deta. Figure 5 shows smulation resuits in case fesdwater flowrate is degraded on purpose The esimated
fesdwater flowrateisamod the same asthe accurate fesdwater flowrate

Teble 1 summarizes the smulaion results usng the numerica Smulaion data. Tweve sgnds were acquired: SG
fedwater flomvrate, SG deam flowratle, G pressure, SG temperature, S'G wide range levd, S'G narrow range levd, hot-
leg temperature, coldHeg temperature, PZR pressure, PZR temperaiure, PZR water levd and ex-core neutron detector Sgnd.
From the autometic design dgorithmof a software sensor, three sgnals among these acquired 11 possible inputs exoept the
SG fedwater flowratewere selected as gopropriate input sgnasto thefuzzy inference system for estimating the fesdwater
flowrae geam genaraor seam flowrate, deam generator pressure, and Seam generator narrow range water leve. Also,
the optimized number of fuzzy rulesis4. If we sdect three input Sgnds heuridtically, the sdected input Sgnaswill bethe
deam generaor seam flowrate, hot-leg temperature, and ex-core neutron detector Sgnd through the corrdation andyds In
the heurigtic input sdlection method, these three inputs were sdected through our intuition using the corrddion andysis
and the number of fuzzy rues was sdected to be 4 from the good performance resuits of many Smulations The proposd



method has amaximum fitness vaue 0.8283 and the same rddive two-sgmaerror 0.11% for both thetraining dataand the
veification data. On the other hand, the heuridic method hes a maximum fitness vaue 0.7530 and the same rddive two-
sgmaeror 0.27% for both the training data.and the verification deta. The rdative two-9gmaeror of the propossd method
is about 145% better then that of the heuridic method. Also, the heuristic method has the same rdaive maximum error
0.38% for bath the training datathe verification data

Fgures 6 and 7 show the performance reauilts of the proposed method for a deta set acquired from a red nudlear
power plant. Figure 6 shows the performance results for the training datas Hg. 6(a) shows the messured feed flowrate and
its esimation error which is smdl enough. Fg. 6(b) shows the histogram of its edimetion eror. The hisogram resambles
the Gaussian didribution. In thisfigure, it is shown thet the rdative maximum eror compered with the rated vaue (801.34
kg/s0) is 1.76% and the rddive two-dgmaeror 0.65% FHgure 7 shows the parformance resuits for the verification deta
FHg. 7(a) shows the messured feed flowrate and its esimation error. Hg. 7(b) showsthe higogram of its esimation erar. In
thisfigure, it isshown thet the rdative maximum error is 2.73% and the rddive two-sgmaearor 0.65% Thereauitsfor the
veification data are dmod the same as that for the training data. Figure 8 shows smulaion results in case fesdwater
flonrateis purposdy degraded. The esimated fesdwater flonrateis dmost the same asthe accurate fesdwater flowrate

Teble 2 summarizes the Smulation resuits usng the red plant data. Thirteen Sgnds were acquired: SIG fesdwater
flowrate, SG deam flowrae, SG pressure SG tamperature, G wide range levd, SG narrow range levd, hot-leg
tamperaiure coldHey temperaure PZR pressure PZR tenperaure PZR waer levd, fesdwater temperature ex-core
neutron detector Sgnd. From the automatic design agorithm of a software sensor, four Sgndls among these acouired 12
possible inputs exognt the SIG fesdwater flowrate were automdicaly sdected as gopropriate input Sgndls to the fuzzy
inference sysem for edimeting the fesdwater flowrate hat-leg temperature, coldHeg temperature, PZR tamperature, and
Seam genarator temperaure. Also, the optimized number of fuzzy rulesis 3. The heuridic input sHection method hesthe
number of fuzzy rules 4, and uses three inputs through our intuition using the corrdation andyss: hat-leg tamperature
fesdwater temperature, and reactor power. The proposad method hes amaximum fitness vaue 0.71.37 and the samerdative
two-sgma eror 0.65% for both the training data and the verification data. On the other hand, the heurigtic method hes a
maximum fitness value 0.6809 and the rdaive two-sgmaerror 0.82 for the training dataand 0.81 for the veification data
Also, the heurigic method hasthe rdaive maximum error 2.37% for the training deta.and 2.79% for the verification data

5. Condusons

A ftware sensor udng a fuzzy inference sysem that has an automdic design dgorithm has been devdoped to
vaidate and monitor the exising herdware sensors. The devdoped software sensor has been goplied to actudly edimete
the fesdwater flowrae Sgnd that is vary important to evauate the reector thermd power. The proposad method wes
verified by usng the numerica smulaion output of MARS code for Kori nudear power plant unit 1 and ao, the red plant
dataof Y onggwang nudear power plant unit 3. In asmulaion using the numerical Smulation data, the rdative two-agma
errorsare equdly 0.11% for bath the training data.and the verification data.and the rdaive maximum error is 0.15% for the
training data and 0.22% for the verification deta. In another smulation using the red plant deta, the rdaive two-sgma
errorsare equaly 0.65% for bath the training deata.and its verification data, and the rdaive maximum eror is 1.76%for the
training dataand 2.73% for the verification data. These erorsare amdl enough and dso, the resullts for the verification data
are dmod the same as that for the training data. Therdfore, the developed software sensor can be gpplied successfully to
vaidate and monitor the exigting fesdwater flovmeters
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Table 1. Resultsfor the numericd Smulation data

Rdaive

Rddive ;
¢ Maximum Number
maximum 2s SHected Inputs
arar(%) arar(%0) Ritness of rues
Pfloposed TranngData| 015 011 08283 | SG seamflowrate
sdedion | Vaficaion gapesre 4
Method Data o 011 - SGNRwaer leve
Heuisic | TrgningData| 038 027 07530 | SGgeamflomrae
Sggftm Vet hot-egtemperaiure, 4
Mahod erb'g;'m 038 027 - ex-core neutron detector Sgnal
Table 2. Resultsfor thered nudear plant deta
Rddive Rddive :
¢ Maximum Number
maximum S SHected Inputs
ara(%0) arar(%) Fitness of rdes
P i hot-leg temperature
ﬁrﬁfd TraningData| 176 065 07137 | o st ;
Sdedtion | Vaificaion 273 065 i PZR tamperaure,
Method Daa : SGtampedaure
Heuridic [
Traning Data 237 0.82 06809 | hatlegtemperature
Sellreﬁtm _ fesdweter temperature, 4
Mahod | Veification 279 081 i ex-core neutron detector Sgnd
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Fg. 2. A procedure for automatically condructing the sructure of the fuzzy inference system.
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