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Abstract 
 

In this paper, a software sensor using a black box modeling method has been developed to monitor existing hardware 
sensors. The black box modeling is accomplished by a fuzzy inference system that is equipped with an automatic design 
algorithm that automates the selection of the input signals to the fuzzy inference system and its fuzzy rule generation 
including parameter optimization. The proposed software sensor was applied to monitoring the feedwater flowrate. The 
feedwater flowrate is measured by Venturi meters in most current pressurized water reactors (PWRs). These meters can 
decrease the thermal performance of nuclear power plants because the feedwater flowrate can be over-measured because of 
their fouling phenomena that make corrosion products accumulate in the feedwater flow meters due to long-term operation. 
The proposed software sensor was verified by using the numerical simulation data of MARS code for Kori nuclear power 
plant unit 1 and also, the real plant data of Yonggwang nuclear power plant unit 3. In a result using the numerical 
simulation data, the relative two-sigma errors are 0.11% and the relative maximum error is 0.22%. In another result using 
the real plant data, the relative two-sigma errors are 0.65% and the relative maximum error is 2.73%. These errors are so 
small that the proposed method can be applied successfully to validate and monitor the existing feedwater flow meters. 

 
1. Introduction 

 
Recently, many researchers have paid much attention to software sensors or inferential sensing, which use other 

readily available on-line measurements because these software sensors can either replace the hardware sensors or be used 
in parallel with them to provide redundancy and verify whether the hardware sensors are drifting (Choi and Park, 2001; 
Régnier et al. 1996; Linko, Luopa, and Zhu, 1997; Chéruy, 1997; Masson et al., 1999). Software sensor design consists of 
building an estimate of some quantity of interest. An estimate of a physical variable can be accomplished through 
mechanistic mathematical modeling or black-box modeling. That is, there are tow kinds of software sensors: model-based 
and data-based. When the process model for evaluating the process variables is a priori unknown or difficult to model like 
the steam generator system at hand, the problem can be stated in terms of data-based black-box modeling. The fuzzy 
inference system is widely used for this black-box modeling. Therefore, in this work, a fuzzy inference system equipped 
with an automatic design algorithm is proposed to design hardware sensors that can replace a physical measurement or 
validate an existing one. That is, the selection of the input signals to the fuzzy inference system and its rule generation are 
automated to optimally estimate relevant physical variables.  

Thermal reactor power is typically evaluated by secondary system calorimetric calculations that strongly depend on 
the accurate measurement of feedwater flowrate, and also, is directly proportional to the feedwater flowrate. Therefore, it is 
very important to accurately measure the feedwater flowrate in order to monitor the thermal performance of a nuclear power 
plant and a lot of researchers have been interested in overcoming the inaccurate measurement problem of the feedwater 
flowrate (Kavaklioglu and Upadhyaya, 1994; Heo, Choi, and Chang, 2000). Venturi meters are used to measure the 
feedwater flowrate in most current pressurized water reactors (PWRs). These meters can induce measurement drift due to 
corrosion product buildup near the meter orifice because of long-term operation. This fouling increases the measured 
pressure drop across the meter, which in turn results in an overestimation of the feedwater flowrate. Therefore, in this paper, 
a developed software sensor is applied to measuring the feedwater flowrate by combining an empirical data based model 
using a fuzzy inference system and other partial measurements of the reactor system.  
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2. A Software Sensor Using a Fuzzy Inference System 

 
There are two types of approaches in developing software sensors. One is a method that estimates required parameters 

on the basis of a deterministic model and the other is the black-box modeling method that depends only on the measured 
values. Black-box modeling approaches such as artificial intelligence are more favored because they can model complicated 
processes which are difficult to be described by analytical and mechanistic methods. Therefore, black-box model 
approaches for building software sensors have widely been attempted. Also, recently, artificial intelligence such as fuzzy 
inference systems and artificial neural networks has been paid much attention from many researchers because artificial 
intelligence can model complex nonlinear systems easily (Choi and Park, 2001; Linko, Luopa, and Zhu, 1997; Masson et 
al., 1999). 

In this work, a fuzzy inference system will be used to design a software sensor. The fuzzy inference system combines 
linguistic and numerical information (mainly input-output pairs). Since the fuzzy inference system is constructed from fuzzy 
if-then rules, linguistic information can be directly incorporated and on the other hand, numerical information is 
incorporated by training the fuzzy inference system to match the target input-output pairs. The main advantages of the fuzzy 
inference system are the possibility of implementing rule of thumb experience, intuition, heuristics and the fact that it does 
not need a mathematical model of a process.  

The inputs and outputs of the fuzzy inference system to be used as software sensors are real-valued variables. 
Therefore, in this work, instead of considering the Mamdani (1975) type fuzzy if-then rules in the form which requires time-
consuming defuzzification calculation, a Takagi- Sugeno (1985) type fuzzy inference system is used where the i -th rule can 
be described as follows: 
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immi xxfyAxANDANDAx ΛΛ , (1) 
where  

jx  = the input linguistic variable to the fuzzy inference system ( j = 1, 2, ..., m ), 

ijA  = the membership function of the j -th input variable for the antecedent of the i -th rule ( i = 1, 2, ..., n ), 
iŷ  = the output of the i -th rule. 

Here, m  is the number of input variables and n  the number of fuzzy rules. There is generally no special restriction on the 
shape of membership functions. In this work, the symmetric Gaussian membership function is used to reduce the number of 
the parameters to be optimized. ),,( 1 m

i xxf Λ  is a polynomial in the input variables but it can be any function as long as 
it can appropriately describe the output of the fuzzy inference system within the fuzzy region specified by the antecedent of 
the rule. When the rule output is of the following form: 
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where 
ijq = the weighting value of the j -th input on the i -th rule output, 

ir  = the bias of the i -th output, 
the fuzzy inference system to be used in this work is called a first-order Takagi- Sugeno (1985) type fuzzy model since the 

output of an arbitrary i -th rule, 
if , is represented by the first-order polynomial of inputs as given in Eq. (2). 

The output of a fuzzy inference system with n  fuzzy rules is a weighted sum of the consequent of all the fuzzy rules. 
Therefore, the software sensor output estimated by the fuzzy inference system is given by: 
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The superscript i  in Eq. (3) indicates that the parameters are related to the i -th rule and the vector q  is the consequent 
parameter vector that should be optimized by the training methods that will be described in next subsection.  
 

3. Automatic Design of a Software Sensor 

 
If the input signals to the fuzzy inference system to be used as a software sensor are selected and its fuzzy rules are 

generated, the design of a software sensor is completed. Therefore, a method that automates the input selection and the rule 
generation (rule number determination and its training method) will be described below. 

 
3.1. Optimization of Input Signals and Fuzzy Rule Number 

The number of variables to be input to the fuzzy inference system has to be optimized for several reasons. First, 
irrelevant inputs will result in an unstable model. Thus, it becomes important to use only high information predictors. 
Secondly, since the generalization may degrade if colinearity is present among the variables, it is necessary to remove 
highly correlated variables. Finally, when building a black-box model with many input variables, a large number of 
observations are required to span the complete input space. The number of required observations grows exponentially with 
the number of input variables, which makes a dimension reduction essential to obtain a good model. In addition, since the 
number of fuzzy inference rules depends on the number of selected inputs, it is required to select the optimum number of 
rules for selected inputs in order to prevent overfitting and underfitting problems (Na et al., 2003).  

Genetic algorithms start from many points simultaneously climbing many peaks in parallel, and hence the probability 
of finding a false peak is reduced compared to the conventional methods that move from one point to another. Accordingly, 
genetic algorithms are less susceptible to being stuck at local minima than conventional search methods (Goldberg, 1989; 
Mitchell, 1996). Also, the genetic algorithm is the most useful method to solve optimization problems with multiple 
objectives. Therefore, it is proposed that a genetic algorithm will be applied to select proper input signals and to determine 
the optimum number of fuzzy rules. In genetic algorithm, the term chromosome refers to a candidate solution that 
minimizes a cost function, generally encoded as a bit string. As generation proceeds, populations of chromosomes are 
iteratively altered by biological mechanisms inspired by natural evolution such as selection, crossover and mutation.  

The genetic algorithms require a fitness function that assigns a score to each chromosome (candidate solution) in the 
current population. In this paper, a fitness function that evaluates the extent to which each candidate solution is suitable for 
the multiple objectives such as small maximum error, small total squared error, the small number of input variables, and 
the small number of rules, is suggested as follows (Na et al., 2003): 

( )44332211exp EEEEF µµµµ −−−−= , (4) 

where 1µ , 2µ , 3µ , and 4µ  are the weighting coefficients, and 1E , 2E , 3E , and 4E  are the sum of squared errors, the 
maximum absolute error, the number of input variables, and the number of fuzzy inference rules, respectively, defined as 
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)(ky  and )(̂ky  denote the actually measured signal and the signal estimated by a software sensor, respectively. Therefore, 
the optimization objectives of the genetic algorithm are to minimize the sum of squared errors, the maximum absolute error, 
the number of used input signals, and the number of fuzzy inference rules.  
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Since genetic algorithms are computationally expensive, it is necessary to reduce the computation time of genetic 
algorithms. A modified genetic algorithm proposed in the literature (Na et al., 2003) will be used in this work. It is possible 
to reduce the computational time by lowering the probability of selecting the inputs that are almost not related to the output, 
though much related to some other inputs. Note that the correlation coefficient matrix of the original data set is equal to the 
covariance matrix of the data after the data have been standardized. This correlation matrix indicates how closely the 
variables (signals) linearly depend on each another. That is, the high specific ),( ji  component of the correlation matrix 
means that the two corresponding ( i -th and j -th) input variables are closely related to each other. The correlation 
coefficients between the input variables and the output variable are used to initialize the input signals selection bits of the 
chromosomes of the genetic algorithm (refer to Fig. 1). A chromosome is encoded as a bit string which consists of two parts 
of bits where one is related to the input signals selection and another is related to the fuzzy rule number. The input signals 
selection part is composed of the same bit number as the number of acquired usable input variables, and one '1' in this part 
represents that the corresponding input signal is selected and zero '0' represents that the corresponding input signal is not 
selected. 

Explaining this process in detail as shown in Fig. 1, the correlation degree (dotted line) between the output (circle) bit 
and the selected input (triangle) bit has to be as large as possible and the correlation degrees (solid lines) between the 
selected input (triangle) bit and the possible inputs (cross) bits have to be as small as possible. To run a conventional 
genetic algorithm for input selection, each bit of the chromosomes is usually randomly assigned one or zero which represent 
that the corresponding input (bit) is selected or not, respectively. However, in this modified genetic algorithm, there is a 
high probability that the corresponding (triangle) bit is assigned one in case a correlation between the specific input 
(triangle) and the output is high and correlations between the specific input (triangle) and the possible inputs (cross) are 
low. On the contrary, there is a high probability that the corresponding (triangle) bit is assigned zero when the correlation 
between the specific input and the output is low and the correlations between the specific input (triangle) and the possible 
inputs (cross) are high. This helps to reduce the computational time by reducing the probability of selecting the inputs that 
are almost not related to the output, though much related to some other inputs. Although the correlation coefficient analysis 
is not able to determine the nonlinear relationship between the input variables and the output variables, since the correlation 
analysis is used once at first or intermittently, the genetic algorithm is able to sufficiently compensate for the nonlinear 
relationship during a few dozens of generations. 

 
3.2. Fuzzy Rule Optimization 

Conventional optimization algorithms including a back-propagation algorithm are susceptible to being stuck at local 
minima. Therefore, in this work the genetic algorithm that prevents the local minimum problem is used to optimize the 
fuzzy rules (membership parameters). However, since the genetic algorithm requires much computational time if there are 
many parameters being involved, the genetic algorithm is combined with a least-squares algorithm. Thus, the genetic 
algorithm is used to learn the antecedent parameters (center position and sharpness of membership functions), and the 
least-squares algorithm is used to solve the consequent parameters ijq  and ir  (the polynomial coefficients of the 
consequent part).  

Therefore, the genetic algorithm is used to select the input signals and the rule number of the fuzzy inference system 
and also, is used to optimize the fuzzy rules to be described in this subsection. The objective of the genetic algorithm as a 
problem of fuzzy parameters optimization is to minimize the overall sum of squared errors and the maximum absolute error 
(refer to Eqs. (4) through (6)), which results in achieving the membership function optimization. 

If some parameters of the fuzzy inference system are fixed by the genetic algorithm, the resulting fuzzy inference 
system can be described as a series of expansions of some basis functions. Since this basis function expansion is linear in 
its adjustable parameters, the least-squares method can be used to determine the remaining parameters. From a total 
number of N  input-output training data that are target values, the consequent parameters are chosen to minimize the 
difference between the target values and the estimated values: 
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Using Eq. (3), the equation for minimizing the cost function is as follows: 
Wqy = , (10) 
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y  is the output data vector, q  is the parameter vector, and the matrix W  includes the input data. 
The output of the fuzzy inference system is represented by the nmN )1( +× -dimensional matrix W  and the 

nm )1( + -dimensional parameter vector q . The parameter vector q  in Eq. (10) is solved by using the pseudo-inverse of 
the matrix W  as follows: 

( ) yWWWq TT 1−
= . (11) 

The process for automatically constructing the structure of the fuzzy inference system is described in Fig. 2. First, the 
input signals selection bits of the initial chromosomes are generated by using the correlation coefficient matrix to reduce the 
computational burden of the genetic algorithm and its rule number bits are allocated with more priority that their decoded 
value becomes a high number if the number of selected inputs is large. An outer loop for the selection of input signals and 
rule number goes round until specific conditions are met. Also, in every input signals and rule number selection step (outer 
loop), an inner loop for fuzzy rules optimization goes round repeatedly until specific conditions are met. In addition, in 
every input signals and rule number selection step a part of chromosomes with very low fitness is replaced by the 
correlation analysis.  

 

4. Application to Feedwater Flowrate Estimation 

 
The developed software sensor was applied to monitoring an existing venturi meter which measures the feedwater 

flowrate. The proposed method was verified through two application cases. First, the proposed method was applied to the 
numerical simulation data of the load-decrease transients in Kori nuclear power plant unit 1 using a MARS code (Lee et al., 
1999) that is a unified version of COBRA/TF and RELAP5/MOD3. Second, the proposed method was applied to the real 
plant starting data of Yonggwang nuclear power plant unit 3. The software sensor using a fuzzy inference system was 
automatically structured using a half of all the acquired data (training data) in the training stage and was verified using the 
remaining data (verification data) in the verification stage.  

Figures 3 and 4 show the performance results of the proposed method for a data set acquired through numerical 
simulations of the computer code. Figure 3 shows the performance results for the training data from the numerical 
simulation. Fig. 3(a) shows the measured feed flowrate and its estimation error. Fig. 3(b) shows the histogram of its 
estimation error. The histogram resembles the Gaussian distribution. In this figure, it is shown that the relative maximum 
error compared with the rated value (469.01 kg/sec) is 0.15% and the relative two-sigma error 0.11%. Figure 4 shows the 
performance results for the verification data. Fig. 4(a) shows the measured feedwater flowrate and its estimation error 
which is small enough. Fig. 4(b) shows the histogram of its estimation error. In this figure, it is shown that the relative 
maximum error is 0.22% and the relative two-sigma error 0.11%. The results for the verification data are the same as that 
for the training data. Figure 5 shows simulation results in case feedwater flowrate is degraded on purpose. The estimated 
feedwater flowrate is almost the same as the accurate feedwater flowrate.  

Table 1 summarizes the simulation results using the numerical simulation data. Twelve signals were acquired: S/G 
feedwater flowrate, S/G steam flowrate, S/G pressure, S/G temperature, S/G wide range level, S/G narrow range level, hot-
leg temperature, cold-leg temperature, PZR pressure, PZR temperature, PZR water level and ex-core neutron detector signal. 
From the automatic design algorithm of a software sensor, three signals among these acquired 11 possible inputs except the 
S/G feedwater flowrate were selected as appropriate input signals to the fuzzy inference system for estimating the feedwater 
flowrate: steam generator steam flowrate, steam generator pressure, and steam generator narrow range water level. Also, 
the optimized number of fuzzy rules is 4. If we select three input signals heuristically, the selected input signals will be the 
steam generator steam flowrate, hot-leg temperature, and ex-core neutron detector signal through the correlation analysis. In 
the heuristic input selection method, these three inputs were selected through our intuition using the correlation analysis 
and the number of fuzzy rules was selected to be 4 from the good performance results of many simulations. The proposed 
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method has a maximum fitness value 0.8283 and the same relative two-sigma error 0.11% for both the training data and the 
verification data. On the other hand, the heuristic method has a maximum fitness value 0.7530 and the same relative two-
sigma error 0.27% for both the training data and the verification data. The relative two-sigma error of the proposed method 
is about 145% better than that of the heuristic method. Also, the heuristic method has the same relative maximum error 
0.38% for both the training data the verification data. 

Figures 6 and 7 show the performance results of the proposed method for a data set acquired from a real nuclear 
power plant. Figure 6 shows the performance results for the training data. Fig. 6(a) shows the measured feed flowrate and 
its estimation error which is small enough. Fig. 6(b) shows the histogram of its estimation error. The histogram resembles 
the Gaussian distribution. In this figure, it is shown that the relative maximum error compared with the rated value (801.34 
kg/sec) is 1.76% and the relative two-sigma error 0.65%. Figure 7 shows the performance results for the verification data. 
Fig. 7(a) shows the measured feed flowrate and its estimation error. Fig. 7(b) shows the histogram of its estimation error. In 
this figure, it is shown that the relative maximum error is 2.73% and the relative two-sigma error 0.65%. The results for the 
verification data are almost the same as that for the training data. Figure 8 shows simulation results in case feedwater 
flowrate is purposely degraded. The estimated feedwater flowrate is almost the same as the accurate feedwater flowrate.  

Table 2 summarizes the simulation results using the real plant data. Thirteen signals were acquired: S/G feedwater 
flowrate, S/G steam flowrate, S/G pressure, S/G temperature, S/G wide range level, S/G narrow range level, hot-leg 
temperature, cold-leg temperature, PZR pressure, PZR temperature, PZR water level, feedwater temperature, ex-core 
neutron detector signal. From the automatic design algorithm of a software sensor, four signals among these acquired 12 
possible inputs except the S/G feedwater flowrate were automatically selected as appropriate input signals to the fuzzy 
inference system for estimating the feedwater flowrate: hot-leg temperature, cold-leg temperature, PZR temperature, and 
steam generator temperature. Also, the optimized number of fuzzy rules is 3. The heuristic input selection method has the 
number of fuzzy rules 4, and uses three inputs through our intuition using the correlation analysis: hot-leg temperature, 
feedwater temperature, and reactor power. The proposed method has a maximum fitness value 0.7137 and the same relative 
two-sigma error 0.65% for both the training data and the verification data. On the other hand, the heuristic method has a 
maximum fitness value 0.6809 and the relative two-sigma error 0.82 for the training data and 0.81 for the verification data. 
Also, the heuristic method has the relative maximum error 2.37% for the training data and 2.79% for the verification data. 
  

5. Conclusions 

 
A software sensor using a fuzzy inference system that has an automatic design algorithm has been developed to 

validate and monitor the existing hardware sensors. The developed software sensor has been applied to actually estimate 
the feedwater flowrate signal that is very important to evaluate the reactor thermal power. The proposed method was 
verified by using the numerical simulation output of MARS code for Kori nuclear power plant unit 1 and also, the real plant 
data of Yonggwang nuclear power plant unit 3. In a simulation using the numerical simulation data, the relative two-sigma 
errors are equally 0.11% for both the training data and the verification data and the relative maximum error is 0.15% for the 
training data and 0.22% for the verification data. In another simulation using the real plant data, the relative two-sigma 
errors are equally 0.65% for both the training data and its verification data, and the relative maximum error is 1.76% for the 
training data and 2.73% for the verification data. These errors are small enough and also, the results for the verification data 
are almost the same as that for the training data. Therefore, the developed software sensor can be applied successfully to 
validate and monitor the existing feedwater flowmeters. 
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Table 1. Results for the numerical simulation data. 

 
Relative 

maximum 
error(%) 

Relative 
2σ  

error(%) 
Maximum 

Fitness Selected Inputs Number 
of rules 

Training Data 0.15 0.11 0.8283 Proposed 
Input 

Selection 
Method 

Verification 
Data 0.22 0.11 - 

S/G steam flowrate, 
S/G pressure,  
S/G NR water level 

4 

Training Data 0.38 0.27 0.7530 Heuristic 
Input 

Selection 
Method 

Verification 
Data 0.38 0.27 - 

S/G steam flowrate, 
hot-leg temperature,  
ex-core neutron detector signal 

4 

Table 2. Results for the real nuclear plant data. 

 
Relative 

maximum 
error(%) 

Relative 
2σ  

error(%) 
Maximum 

Fitness Selected Inputs Number 
of rules 

Training Data 1.76 0.65 0.7137 Proposed 
Input 

Selection 
Method 

Verification 
Data 2.73 0.65 - 

hot-leg temperature,  
cold-leg temperature,  
PZR temperature, 
S/G temperature 

3 

Training Data 2.37 0.82 0.6809 Heuristic 
Input 

Selection 
Method Verification 

Data 2.79 0.81 - 

hot-leg temperature,  
feedwater temperature,  
ex-core neutron detector signal 

4 
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Fig. 1. The selection process of input signals and rule number. 
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Fig. 2. A procedure for automatically constructing the structure of the fuzzy inference system. 
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(a) Feedwater flowrate error (b) Histogram of the feedwater flow estimation error 

Fig. 3. Feedwater flowrate error and its histogram for the training data of a numerical simulation. 
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(a) Feedwater flowrate error (b) Histogram of the feedwater flow estimation error 

Fig. 4. Feedwater flowrate error and its histogram for the verification data of a numerical simulation. 
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Fig. 5. Estimation of feedwater flowrate signal in case it is assumed that it is gradually degraded. 
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(a) Feedwater flowrate error (b) Histogram of the feedwater flow estimation error 

Fig. 6. Feedwater flowrate error and its histogram for the training data of a real plant. 
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(a) Feedwater flowrate error (b) Histogram of the feedwater flow estimation error 
Fig. 7. Feedwater flowrate error and its histogram for the verification data of a real plant. 
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Fig. 8. Estimation of feedwater flowrate signal in case it is assumed that it is gradually degraded. 
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