Study on the Oxidation Behavior of spent MOX Simfuel at High Temperaturea in Air

(900~1300°C) TGA(Thermo-Gravimetric A	Analysis)
OM(Optical Microscopy) .	
600°C 가	,
가 가 . 1200°C	U_3O_8
UO ₃ 가 .	
(0~50MWd/kgU) ,	
가 , 가	
가 .	

Abstract

The air oxidation of PWR MOX simfuel was investigated using thermogravimetric analysis and optical microscopy, focused on the high temperature range between 900 and 1300°C. In this high temperature range, sintered pellet specimen was not spalled by the air oxidation. And the oxidation rate was decreased with increasing the oxidation temperature. At temperatures above 1200° C, the weight loss was observed presumably by the U₃O₈ decomposition and the UO₃ volatilization.

The effect of simulated burnup, from 0 to 50MWd/kgU, on the oxidation of

2002

PWR MOX simfuel was investigated using same methods. The magnitude of fission product of simfuel was calculated using ORIGEN-S code in SCALE 4.3. In result, the oxidation rate was decreased with increasing the simulated burnup. But remarkable decreasing rate was not revealed.

1.

 UO_2 [1-5], MOX [6-9] simfuel 가 가 UO_2 가 (dopant), (oxygen partial pressure) [4, 10-17]. 600°C 가 가 가 가 가 [4, 11-12]. 1200°C O/M 가 [4, 18]. 가 가 가 가 가 doped-UO₂ 가 가 가 UO_2 가 가(valence) 가 UO_2 fluorite 가 가 2. UO2-8.17mol%CeO2 50MWd/kgU SCALE 4.3 ORIGEN-S [19-20] ,

		UO ₂	11 7	'ㅏ [1]	
	가	(PWR MOX Simfuel)			
•					가
		dry m	illing	, 160RPM	
5 (12)	. 3ton	,	1700°C	6
		(flowing H ₂)			
		1mm disk	polishing		
		. TGA(Thermo-Gra	avimetric Analysis)		가

, 900°C, 1000°C 1200°C 1300°C , OM(Optical Microscopy, REICHERT MEF4 M)

3.

40MWd/kgU PWR MOX simfuel 900~1300°C 가 가 가 가 1 , 1200°C 가 , 500~600°C U₃O₈ (plasticity) 가 U₃O₈가 (spalling) , [4] 가 가 가가 1 UO_2 oxygen potential [21-22] UO_{2+x} 가 가 O/M , 가 U_3O_8 (decompose) UO_{2+x} 가 . $\mathsf{UO}_{3(g)}$ 1200~1300°C 2, [$UO_{3(g)}$ 23] , 가 가 .

1) 500~600°C	가 가	フ
	U ₃ O ₈	

5.

[1] W.B. Wilson, J. Inorg. Nucl. Chem., 20 (1961) 242 [2] K.K. Bae, B.G. Kim, J. Nucl. Mater., 209 (1994) 274 [3] R.J. McEachern, J.W. Choi, J. Nucl. Mater., 249 (1997) 58 [4] R.J. McEachern, P. Taylor, J. Nucl. Mater., 254 (1998) 87 [5] D.R. Olander, J. Nucl. Mater., 252 (1998) 121 [6] M.J. Bennett, Nucl, Energy, 27 (1988) 49 [7] T.K. Campbell, Nucl. Technol., 84 (1989) 182 [8] L.E. Thomas, Mater. Charact., 28 (1992) 149 [9] L.E. Thomas, J. Nucl. Mater., 201 (1993) 310 [10] K.A. Peakall, J. Nucl. Mater., 2 (1960) 194 [11] M. Iwasaki, J. Nucl. Sci. and Technol., 5 (1968) 652 [12] H.R. Hoekstra, S. Siegel, J. Inorg. Nucl. Chem., 32 (1970) 3237 [13] J.W. Choi, R.J. McEachern, J. Nucl. Mater., 230 (1996) 250 [14] H. Serizawa, J. Alloy and Compounds, 271 (1998) 386 [15] W.Wang, J. Alloy and Compounds, 287 (1999) 79 [16] G.S. You, K.S. Kim, J. Nucl. Mater., 277 (2000) 325 [17] J.A. Serrano, J. Nucl. Mater., 294 (2001) 339 [18] M. Shuai, J. Molecular Structure, 536 (2001) 269 [19] O.W. Hermann, R.W. Westfall, ORNL/NUREG/CSD-2/V2/R6, 1998 [20] S.M. Bowman, L.C. Leal, ORNL/NUREG/CSD-2/V1/R6, 2000 [21] K.H. Park, J. Nucl. Mater., 247 (1997) 116 [22] C. Gueneau, J. Nucl. Mater., 304 (2002) 161 [23] T.C. Ho, Waste Management, 20 (2000) 355 [24] J.G. Kim, Y.K. Ha, J. Nucl. Mater., 297 (2001) 327

1.		ORIGEN-S 가				
(wt.%)						
Compound	Simulated burnup(MWd/kgU)					
-	0	10	20	30	40	50
UO ₂	93.41	93.22	93.00	92.75	92.45	92.10
BaO		0.05	0.09	0.13	0.17	0.21
CeO ₂	6.59	6.02	5.46	4.93	4.44	4.00
La_2O_3		0.04	0.08	0.12	0.16	0.20
MoO_3		0.12	0.25	0.38	0.52	0.66
SrO		0.02	0.04	0.05	0.07	0.08
Y_2O_3		0.01	0.02	0.03	0.03	0.04
ZrO ₂		0.11	0.21	0.31	0.41	0.50
Rh_2O_3		0.02	0.05	0.08	0.10	0.12
PdO		0.06	0.13	0.22	0.30	0.40
RuO ₂		0.18	0.34	0.50	0.65	0.80
Nd_2O_3		0.16	0.33	0.51	0.69	0.87

* UO₂+8.2wt%PuO₂(8.17mol%PuO₂)

2. 가		가(valence)		
Elements	Valence	Elements	Valence	
U	+4, +5, +6	Y	+3	
Ba	+2	Zr	+ 4	
Ce	+3, +4	Rh	+2, +3, +4	
La	+3	Pd	+2, +4	
Мо	+2, +3, +4, +5, +6	Ru	+2, +3, +4, +6, +8	
Sr	+2	Nd	+3	

ORIGEN-S

(a) 900°C

(b) 1000°C

(c) 1200°C

3. PWR MOX simfuel

(OM, ×200, ×500)

(a) 900°C

(c) 1200°C

4. PWR MOX simfuel

(d) 1300°C

(OM, ×500,

mount)

5. PWR MOX simfuel

=900°C)

(