·2002 춘계학술발표회 논문집 한국원자력학회

Densification and Grain Growth of UO₂ Pellet by Microwave Sintering

,

,

, ,

Abstract

Microwave sintering process of UO_2 pellets was studied using a multi-mode type cubic applicator, and a magnetron which generates maximum output of 10kW and operates at a frequency of 2.45GHz. The densification and grain growth behaviors of UO_2 green pellets were investigated to find out sintering variables such as sintering temperature and time during the microwave sintering. The results showed that microwave processing enhanced the densification and grain growth process. The sound sintered pellet having more than 95% theoretical density and 5µm average grain size can be obtained by 1hour holding at 1600 in H₂ atmosphere. The effects of heating rate and thermal shielding on sintering process were also investigated.

1.

가

. UO₂ 1700 가

가 . UO₂

가 가 . 가 가 . 가 가 가 가 . 가 가 가 • 가 . .[1-3] 가 [4,5] 가 가 , UO₂ Thornton[6] 1.6kW 1983 . 4 가 Subramanian[7] 1kW 가 UO_2 95% . Microwave 1 95.5%TD SIEMENS [8,9] 가 . 가 • 가 . 가 2. ADU UO₂ Zn - strate 0.2wt% 3ton/cm² 가 가 2.45GHz 10kW 1 . 가 가 가 . alumina board, 가 . mulite board pellet thermocouple 1(a) . 가 (b) UO₂ powder (c)

 $1. U0_{2}$

1

	1		
	()	(hrs)	(/min)
MT1	1600	1	7(~1550), 3(1550~~)
MT2	1650	1	7(~1550), 3(1550 ~)
MT3	1700	1	7(~1550), 3(1550 ~)
MT4	1750	1	7(~1550), 3(1550 ~)
MD1	1700	0	7(~1550), 3(1550~)
MD2	1700	1	7(~1550), 3(1550~))
MD4	1700	2	7(~1550), 3(1550 ~)
MD4	1700	4	7(~1550), 3(1550 ~)
RH1	1700	4	:30
RH2	1700	4	:20

2. 1(a) 1700 1

(a) (b) (c) (d)

3. 1(b)

(a)1600	4
(b)1650	0

4

1(c)

가

(a) MT1 (b) MT2 (c) MT3 (d) MT4

(a) MT1 (b) MT2 (c) MT3 (d) MT4

1700

가

가

8. 1700

11

(b)

(b) RH2

(a)

(a) RH1

11.

12.

(a)	RH1	(2)	RH2
(c)	RH1	(d)	RH2

[1] Booke, J.H., Cooper, R.F., & Freeman, S.A., Mat. Res. Innovat. 1(1997) 77

- [2] Clarke, D.E., Folz, D.C., & West, J.K., Mat. Sci. & Eng. A287 (2000) 153
- [3] Bykov, Y.V., Rybakov, K.I., & Semenov, V.E., J. Phys. D:Appl. Phys. (2001) R55
- [4] loffe, US Patent US6,228,377 B1
- [5] Chandramouli, V. et al., J. Nucl. Mater. 231 (1996) 213
- [6] Thornton, T.A., and Holaday, V.D., Jr., US Patent 4389355 (1983)

가

가

가

- [7] Subramanian, T. et al., Materials Letters 46 (2000) 120
- [8] Siemens, World Patent WO 98/08227
- [9] Siemens, World Patent WO 99/42778