Zr-2.5Nb **b**-Zr

Behavior of **b**-Zr Decomposition and Diametral Creep of Zr-2.5Nb Pressure Tubes with Neutron Irradiation

150

Young Suk Kim, Yong Chan, Suh, Kyung Soo Im, Yong Moo Cheong, Sung Soo Kim (Korea Atomic Energy Research Institute)

ABSTRACT

The objective of this study is to investigate the microstructural evolution of Zr-2.5Nb tubes with neutron fluence and temperature and its effect on the in-reactor creep of the Zr-2.5Nb tubes with the operational time. To this end, we investigated the phase decomposition of β -Zr with the elevation in a Zr-2.5Nb tube irradiated in the Wolsong Unit1 for a 10-year operation. To find out the effects of neutron fluence and temperature on the β -Zr decomposition, three tube rings that were taken from the inlet, middle and outlet parts of the irradiated tube were subjected to TEM analyses on thin foils an the carbon replicas with extracted particles along with the off-cut tube ring. Neutron irradiation suppressed the decomposition of β -Zr phase while a thermal effect speeds it up especially at the outlet part of the tube exposed to the highest channel temperature. To evaluate the effect of β -Zr decomposition on the creep of pressure tubes, supplementary creep tests were conducted at temperatures ranging from 623 to 673 K under 120 MPa on the Zr-2.5Nb sheets made with different Nb contents in the β -Zr phase from 49 to 82 %. A degree of decomposition of the β -Zr phase or the Nb content in the β -Zr phase governs the creep of the Zr-2.5Nb sheets. Based on these results, the acceleration of the in-reactor creep of the Zr-2.5Nb tubes is suggested after a long-term operation.

1.						
가	Zr-2.5Nb				delayed hydr	ide cracking,
,	(sag),		•			
				,	hydri	de blister
		[1-2].			[2]	71
			30		[5].	~1
		,	50			

Fig. 1. Initial Microstructure of a Zr-2.5Nb tube operating in the Wolsong Unit 1 (Before Irradiation).

1	10		off-cut					
		가 .						
	inlet, middle	outlet	170 mm		ring			
β-Zr	(phase	decomposition)				3	ring	
			275.4 to 30	2.1 °C, 6.84	$x10^{21}$ to 8.9x1	0^{21} n/cm^2 (E	l>1MeV)	
(1). β-2	Zr	가	, β -Zr	Nb		가		
: TEM	α-Zr	β-Zr				Nb		
carbo	on replicas			carbon				
	SADP (Sele	ected area diffra	action pattern	l)	Nb			
가	,		β-Zr	Nb				
β-Zr	β	-Zr Nb		, Zr-	2.5Nb	4		
	1323 K, 0.5h		4 가			가	(2) [6].
Zr-2.51	Nb β-	Zr Nb	carbor	replicas	β-Zr			EDS
				25 mn	n			
	, 623-67	3 K 120-1	50 MPa					

Location	Distance from the Inlet (cm)	Temperature (°C)	Fast neutron fluence (E>1MeV) (x10 ²¹ n/cm2)
Inlet	173-190	275.4	7.66
Middle	266-283	285.5	8.91
Outlet	456-483	302.1	6.84

Table 1. Operating conditions of the examined tube.

Table 2. Manufacturing processes to make Zr-2.5Nb sheets with different Nb contents in the β -Zr phase.

Proce	P1	P2	P3	P4	
SS					
Proce	Ingot-	Ingot-	Ingot-	Ingot-	
dures	homogenization	homogenization	homogenization	homogenization	
	treatment at 1323	treatment at 1323 K-	treatment at 1323 K-	treatment at 1323 K-	
	K-hot rolling at	hot rolling at 1132 K-	hot rolling at 843 K-	hot rolling at 973 K-	
	1132 K-final cold	cold rolling-	intermediate anneal at	intermediate anneal	
	rolling (30%)-final	intermediate anneal at	865 K-cold rolling-	at 953 K-cold	
	anneal at 723 K for	865 K-cold rolling-	intermediate anneal at	rolling-intermediate	
	24h	intermediate anneal at	865 K-cold rolling-	anneal at 865 K-cold	
		865 K-	intermediate anneal at	rolling-intermediate	
		homogenization 1132	865 K-final cold	anneal at 865 K-final	
		K and water quench-	rolling (50%)-final	cold rolling (50%)-	
		final cold rolling	anneal at 723 K for	final anneal at 723 K	
		(30%)-final anneal at	24 h	for 24 h	
		723 K for 24 h			

•

1	1	10	Zr-2.51	Nb			β-Zr			
. 1		G	riffiths 가			(Pi	ckering)	2-12	
	X-ray		β-Zr		β-Zr	N	lb			
Griffiths	β-2	Zr	flux 가	가		가		(inle	et	outlet)
[7].				[7].				X-ray		
		β-Zr								carbon
replicas		β-Zr					, outlet			
β-Zr	inlet	outlet	가	가			β-Zr	가		
	Carbon replicas						β-Zr		가	가
		,			β-Zr	Nb		가		

Fig. 1. Distribution of the Nb content in the β -Zr phase with a distance from the inlet of the Z-2.5Nb tube irradiated in Wolsong Unit 1 for 9.3 EFPYs

			inlet		β-Zr	Nb			of	f-cut	β-Zr
Nb					,					β-Zr	Nb
	off-cut		β-Zr	Nb					οι	utlet	
off-cut	β-Zı	[Nb			N	b	,			(thermal
decomposition)가					1					Zr-2.5Nb
1				가				β-Zr	Nł	ο α-Z	r
			,	가			フ	י ነት	Nb		
β-Zr	Nb										
						7	' 				Zr-
2.5Nb					, [8]	l.			Zr-2.5N	Ъ	
					[•]			,		-	
가 Zr-2.5Ni	h										
	가가		フトフト					,			
				가					. 4 가		
Zr-2.5Nb			2	•					,	2(a)	
					20	(b)				_()	2 (c.d)
Zr-2.5Nb				,		(-)	4 가		, Zr-2.5N	ъ в-2	Zr Nb
carbor	n replicas			49-	82 %	(2).	3		- 1-	350-400 °C
	120 MPa			.,	- /-	`	_/:		B-Zr	Nb	
Zr-2.5N	h				49	9% Nb	ß-Zr	81-82	 2% Nb	ß-Nb	
	10			,	B-Zr	Nb	가			ß-Nb	
Zr-2.5Nb	10	가	•	,	P 21	ß-Zr	Nh	,	7}	P 110	
21 2.01(0				ß-Zi	, -	P 21	110	, .	•		,
				P Z				,			
	β-Zr		ß-Zr	Nb	가						
	Zr-2.5Nb	,	1-		·	α-	-Zr	Nb			.β-Zr
Nb	α-Zr	Nb					-				, _F —
α-	-Zr				Nł	。 フト					-
00					110						

Fig. 2. Microstructures of the Zr-2.5Nb sheets made with 4 different manufacturing processes.

Table 2. Microchemical composition of the β -phase determined by EDX on the extracted particle from the Zr-2.5Nb sheets made with 4 different manufacturing processes.

Process	P1	P2	P3	P4
Nb content in the β -Zr phase	49	62	82	81
(at.%)				

Fig. 3. Creep Rate of the Zr-2.5Nb sheets made with 4 different manufacturing processes under the applied stress of 120 MPa and temeperatures of 350 to 400 °C.

		Zr-2.5Nb						,		
						. ,	Zr-2.5	5Nb		β-Zr
	가	β-Zr	Nb		,		β-Zr			β-Zr
	Nb				outlet			β-Zr	Nb	가
	, inlet	middle								β-Zr
	가	β-Zr	Nb							
가 Zr-2.5Nb				, 4 가			Zr-2.5Nb			
	β-Zr	Nb				Zr-2.5Nb			β-Zr	•
Nb	가		,	β-Zr	β-Nb		10			
			, 가			Zr-2.5Nb				
	, β-Zr	β-Nb			가				,	
	β-Zr	アフ	የት		outlet	가				

1

5.

- (1) Cheong Y. M. et al., 2000, KAERI Report, KAERI/TR-1675/00, Korea Atomic Energy Research Institute, p. 8
- (2) Field G. J., Dunn J. T. and Cheadle B. A., 1985, Can. Met. Quar., Vol. 24, pp. 181-188.
- (3) Glendening W. R., 1996, AECL Report, XX-31100-400-001, p. 29.

1

- (4) Griffiths, M., Mecke, J. F. and Winegar, J. E., 1996, Zirconium in the Nuclear Industry, Tenth International Symposium , ASTM STP 1295, pp. 580-602.
- (5) Urbanic, V. F and Gilbert, R. W., 1990, Proceedings, Technical Committee Meeting on Fundamental Aspects of Corrosion on Zirconium Base Alloys in Water Reactor Environments, IAEA, Vienna, IWGFPT/34, pp. 262-272.
- (6) Kim, Y. S., 1999, Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology (SmiRT-15), Seoul, Korea.
- (7) M. Griffiths, J.F. Mecke and J.E. Winegar, 1996, Proceedings of the 11th Symposium on Zirconium in the Nuclear Industry, ASTM STP 1295, p.580.
- (8) R.S. Nelson, J.A.Hudson, D.J. Mazey, 1972, J. Nucl. Mater., Vol. 44, p.318.