

2002

Abstract

The microstructures of metallic fuels that were fabricated by the powder sintering method were investigated. The pressing and sintering characteristics of U-Zr alloy fuel were investigated at the various mean size of Zr powder. As the mean size of Zr powder increased, the green density of U-Zr powder compact decreased but the sintering density increased. There were two kinds of phases in all specimen; $-UZr_2$ matrix and lath shape -Zr precipitates. For all Zr powder conditions as sintering times increased until 2 hours, area fraction of δ phase increased and that of -Zr phase decreased. As sintering times increased from 2 hours to 5 hours area fraction of δ phase decreased and that of -Zr phase increased.

U-Zr U-Pu-Zr (breeding performance), , , 가 IFR (Integral Fast Reactor) [1-4]. 가 . grain-. boundary grain-boundary tunnel • . , U Zr , , 가U IFR 가 U ,

•

2.

U 0.4%

				120mesh	sieving	
	$48 \mu m$. Zr	hydriding-deh	ydriding		가
32, 48, 57µm	120mesh					
1.						
U 40 wt%		30g		V-shape tum	bler mixer	
75 rpm 2				double ad	ction press	
4400kgf/cm ²	가	20	. Zr	9		
					가	
4						
(Al ₂ O ₃) 가			가	(Y_2O_3))	
(ZrO_2)						

1500				0.5	5		•
600	가			8			
				poli	ishing	SEM BE ima	ge
IN	MT Ir	nage analyzei					
3.							
Zr				2.	dou	ible action pre	essフト
				Die			
가			U	가	, Zr		가
	가	가		:	가 . Z	r	가 32
μm		가 80	.2%TD	48µm	80	0.1%TD 32	um
			フト 57µm		가	77.3%TD	가
3		가					
7	' ŀ						, 4
				. Zr			
가			가 ,	2		가	
가 가		フ	ŀ		가 가	Zr	
フト 57µm	가	가	가				, Zr
							Zr
			가		가		
		가					
		가 기	ŀ	. ,			
					가	가	
		Zr	フト 32µm		가		
가							
5		S	SEM BE image				
	UZr ₂	Zr	2	.[5]]		
	UZr ₂	2		Zr			,
					. 1450		

		Zr		가			1500					
									가		. SE	EM
image		Zr		5	가 32	, 48, 1	57µm		2		δ	
가		α-Zr					,		5	δ		
	α-Zr			가					Zr			
				Zr 3	2μm				δ,	α-Zr ,		
가												
	2		δ			가	α-Zr			U, Zr		
				. 5		δ			C	x-Zr		가
	5				δ		Zr		ppt()			
				. ,		[5]		δ	Zr	65~76	5 at%	
δ	Zr			α-Zr				가			. Zr	
δ			기	• 4~5%						가		•

1. Zr

U-Zr

Zr (µ	m) (hr)	(UZr2)	-Zr	pore
57	0.5	77.4	21.3	1.3
57	1	77.8	21.1	1.1
57	2	78.2	21.0	0.8
57	5	73.4	25.6	1.0
48	1	82.8	15.5	1.7
48	2	83.0	15.7	1.3
48	5	81.9	17.0	1.1
32	1	83.4	15.6	1.0
32	2	83.8	14.7	1.5
32	5	83.8	15.3	0.9

4.

 Zr
 가

 가
 .
 Zr
 가

- 1. G.L.Hofman, L.C.Walters, and T.H.Bauer, Progress in Nuclear Energy, Vol.31, No.1/2, pp.83-110,1997
- 2. C.E. Till, I. Chang Y. and W.H. Hannum, Prog. in Nucl. Energy, Vol. 31, 1997, pp. 3-11.
- 3. D.D. Keiser, Jr. and M.A. Dayananda, Metallurgical Transaction A, 25A, 1994, pp. 1649.
- 4. G.L. Hofman, L.C. Walters and T.H. Bauer, Prog. in Nucl. Energy, Vol. 31, 1997, pp. 83-110
- 5. H.Okamoto, Journal of Phase Equilibria, 13(1), 1992

(

: U, : Zr)

4. Zr

5. 40wt% U-Zr