

The important factors(thermodynamic, environmental, material) affecting erosion-corrosion of carbon steel are simulated with computer program. The wear rate of pipings depends on a complex interplay of many parameters. The most effective method to reduce the wear rate was material improvement. The results would contribute to aid utilities where corrosion damages have experienced because of wall thinning.

2002

(water) 2 (water-wet steam) 2 [2-4] Surry [5-7]. (,), (([2,6]. Heitmann , pH,)) , [4] 가 [6,10,11]. 가 . 가 Surry EPRI(Electric Power Research Institute) CHECMATE [12]. CHECMATE 2 가 가 . 2. 2.1 가 가 А 2 -. 1988 cupronickel titanium 2 A-106Gr.B, C A-234WPC 가 ~0.03% . 가 가 145°C(293°F) 185°C(363°F) , 223°C(450°F) 가 , pH 가 -. 2.2 EPRI CHECMATE case data form, case segment data form segment (,,,,,,,,,,) component data form . Table 1 [12]. heat balance diagram, P&ID drawings, isometric drawings, , spec. , , . Table 2 . , . SE1 SE6 가 case data SE1 SE2, SE3 SE4 SE5 SE6 segment data Table 3 .

А CHECMATE CHECMATE Fig. 1 . 가 , pH, , pН Framatome Framona 3. 3.1 Fig. 2 Table 3 3 가 5ppb 6 (SE1, SE2) 가 145°C 185°C 223°C 가 SE1 145°C SE2 가 . . Fig. 2 4 10 45° (CHECMATE geometry code) 90° 가 (Table 4). Fig.3 145°C [6]. 185°C 가 223°C 가 . CHECMATE • , , 3.2 3.2.1 . Fig. 4 223°C 3 (Table 2) 145°C, 185°C . 145°C 9.5 6.9mils/year, 185°C 7.9 5.4mils/year 223°C 4.7, 3.5, 3.5 80°C~230°C 3.8 mils/year 2 140°C~260°C 가 [10.11]. 145°C 185°C 가 가 223°C 가 . 145°C 가 . 3.2.2

가 - 가 Fig. 5 3 (Table 2) 5ppb 100ppb 가 SE2

가 5ppb 20ppb 가 가 1/2, 100ppb 1/10 가 -. 3.2.3 pH Fig. 6 Table 2 가 pН . pH가 (Fig. 2) 가 145°C 가 가 1/3 가 pH (Table 5) . 가 рН . рΗ 가 ethanolamine(ETA) [13]. 3.3 (wet steam) -가 [8]. Fig. 7 . 0.03wt% A106 Gr.B 0.58wt% 1% 가 0.03wt% 1/11 1/30 . 14.8, 17.1, 18.9ft/sec 가 가 145°C 185°C 가 223°C 1/2 . 1wt% 가 2wt% A335 P22 가 . 1wt% 가 . , 1 - 0.5 [15], 가 가 FAC . 4. 1. 가 가 2. 145°C pH 가 .

가 3. . 4.

•

References

- 1. C.J. Czajkowski, NUREG/CR-4868, Brookhaven National Labotatory (1987)
- 2. G.A. Delp et al., EPRI NP 3944, Palo Alto, CA, Apr., (1985)
- R.Svoboda et al., Erosion-Corrosion of Power Generating Equipment, M.O. special and A. Artens, eds., p.269, Plenum Press, New York, (1984)
- 4. J.P. Cerdan et al., Conf. ADERP, Electricite de France, Seillac, France, Mar., (1980)
- 5. G.J. Bignold et al., Nucl. Engr. Int., June, p.37 (1981)
- G.J. Bignold et al., Water Chemistry of Nuclear Reactor System 2, BNES, London, p.3 (1981)
- 7. Ph. Berge et al., Water Chemistry of Nuclear Reactor System 2, BNES, London, p.19 (1981)
- 8. G. Cragnolino, CORROSION/ 87, NACE, Houston, Texas, paper No.86., (1987)
- 9. Water Chemistry of Nuclear Reactor System 3, Vol. 1 and 2, BNES, London, (1983)
- 10. G.J. bignold et al., Electricite de France, Les Renardieres, France, May, paper No.12 (1982)
- 11. M. Izumiya et al., Water Chemistry and Corrosion Products in Nuclear Power Plants, IAEA, Vienna, Austria, p.61 (1983)
- 12. Chexal,V.K., Dietrich, E.B., et al., CHECMATE Computer Users Manual, EPRI Report, NSAC-145L, Rev.1, April
- 13. K.K. Park, S.W. Yoon, J. Corros. Soc. of Korea, 29, 6 (2000)

Case data	Segment data	Component data		
	,			
amine	source/operating	material , diameter,		
pH, oxygen	line , line	schedule/thickness, flow rate		
	source enthalpy or	thermodynamic state,		
	quality, sink	R/D, orientation, orifice size, valve		
	,	coefficient, pipe length		
		TDAT, ,		
		inspection status		

Table 1 Input data for computer code

Line	Temperature(F)		Pressure(psig)		Enthalpy
	Design	Operation	Design	Operation	(Btu/lbm)
SE1	300	292	150	50	262
SE2	390	293	400	315	263
SE3	390	363	400	315	336
SE4	450	365	1550	1153	339
SE5	450	434	1550	1153	413
SE6	450	434	1550	1153	413

Table 2 Design conditions of piping segments

Table 3 Test conditions of components for computer simulation

Test	Amine type	рН	Oxygen	Material	No. of
No.			(ppb)		hours
1	ammonia	9.0	5	A234WPB	10000
2	ammonia	9.3		A106Gr.B,C	
3	ammonia	9.5	5	A234WPB, A106Gr.B,C,	
				A335 P2, A335 P11,	
				A335 P22	
			8,10,15,	A234WPB,	
			20,50,100	A106Gr.B,C,	
4	ammonia	9.8	5		
5	ammonia	10			
6	morpholine	9.5			

Line	Component	Geometry	Wear rate	
		code*	mils/year	
SE2	elbow	2	9.5	
	elbow	1	7.4	
	pipe	52	6.2	
	pipe	60	5.6	
	pipe	58	5.2	
	pipe	67	4.9	
SE4	elbow	2	7.9	
	elbow	1	6.1	
	pipe	52	5.1	
	pipe	57	5.1	
	pipe	58	4.3	
SE6	pipe	52	2.3	
	pipe	58	1.9	
	pipe	9	1.3	

Table 4 Effect of geometry code on wear rate of components

* CHECMATE Computer Program

User s Manual NSAC/145L[12]

Table 5 Calculated pH of ammonia and morpholine using the FRAMONA Code at 145

Item	pH(25 ℃)	9.0	9.3	9.5	9.8	10
рН	ammonia	6.325	6.575	6.753	7.031	7.222
(145 °C)	morpholine	6.537	6.836	7.037	7.338	7.538

Fig. 1 Flow chart of computer code

Fig.2 Current wear rate of components contained in segments

Fig. 3 Effect of flow rate on wear rate of a elbow component

Fig. 4 Effect of temperature on wear rate of a elbow component

Fig. 5 Effect of dissolved oxygen on wear rate of a elbow component at pH 9.5(ammonia)

Fig. 6 Effect of amines on wear rate of a elbow component at SE2

(c)

Fig. 7 Effect of materials on wear rate of a pipe component at (a) 145 (b) 185 (c) 223