가 CANDU

Effect of hydrogen concentration and temperature on Fracture Toughness of CANDU Pressure Tube

373-1

150

CANDU 가

가 .

. Sieverts 50ppm 200ppm

300 .

가 가 가 가 가

가 가 .

Abstract

The effects of hydrogen concentration on the axial fracture toughness of Zr-2.5 wt% Nb CANDU pressure tube material have been determined from room temperature to 300. The specimens were charged to 50, 100, 150, 200ppm of hydrogen. As hydrogen concentration increased, hydride volume fraction, thickness and length increased. However, interhydride spacing remained nearly constant. At room temperature, fracture toughness decreased rapidly with increasing hydrogen concentration until hydrogen concentration was below 100ppm. However, fracture toughness remained at a similar level at above 100ppm. Ductile-brittle transition temperature increased slightly when hydrogen concentration increased. At high temperature, fracture toughness also decreased because yield stress increased by hydride volume fraction.

1.

CANDU						1	
[1].	CAND	U					
, CANDU			aloy - 2	7	, ŀ		
,	71	Zr - 2.51	Νb			. Zircaloy-2	71
[2].	가 Zr-2.5Nb					가 기	가 'ト
[4].	21 2.0146					· 가	'
				71			•
				가		가	
,						·	
,							
71				가			
가	•	-	' }				
			•				
		2.					
	CANI			Zr - 2			
W=17mm	Fig ASTM E		CT(Com	pact Te	nsion)		
vv=17111111	. Precrack		4			15MPa n	n.
	10MPa m가			/W= 0.5	가	. 가	,
Sieverts	40	00	10 ⁻⁵ torr				
					400	10 ⁻⁵ torr	
	24		0.0				
	300 0.3mm/min . (DCPD, direct current potential drop)						•
[3].	Fig.		D, direct	Jurient	Potern	tiai diopj	
	3						

300 heat tinting . J-R blunt line dJ/da a=0.15 1.5mm J 3. 3-1. cold-mounting diamond paste, 1µm chrome oxide polishing , H2O: H2SO4: HNO3: HF = 3:3:3:1 8 swab-etching Image analyzer program (SEM) 3-2. . Fig. 3 . Ells[4]가 cold-drawing radial habit plane . Ridley[5] , Fig. 4 가 가 가 가 가 가 . Fig. 5 가 5 10µm 가 가 가 가 가 Fig. 6 가 200 500µm 가 Fig. 7 가 100µm 가 가 가

가

300 . 50ppm, 100ppm ,

as-received .

J-R J-R dJ/da

as-received , 가 . Fig. 8(a)

, J-R

가 . J-R Fig. 8(b) 가 J 가 .

가 . 가 가

100 , 130 J-R 가 , 130 가

,

- (DBTT) 50ppm DBTT 100 .

100ppm , Fig. 8(c) J-R 50ppm . , 100

DBTT 가 가 가

.

. , fissure ligament cumulative mode[6] 가

. DBTT J-R . DBTT 가

Fig. 9 dJ/da graph . graph DBTT 130 , 가 가 DBTT 가

```
가
                                                 ( h f)
                                                                                ( <sub>y</sub>)
                            . Fig. 10[7] <sup>h</sup> y
                            <sup>h</sup>f가 y
graph . 150
                                                                 <sup>h</sup> 가 y
                    가
                                              , 150
                     가
         300
                                                      가
                                              가 가
Puls[7]
                                                            가 가
  . , Fig. 10
                                                                      DBTT
                            가 DBTT
                                                  가
Fig. 9
                                 , DBTT
                                                                            가
                                                            [8].
                            \mathbf{s}_{y,total} = V_f \mathbf{s}_f^h + (1 - V_f) \mathbf{s}_{m,y}
                              where V<sub>f</sub>:
                                       m, y:
                 300
                                                   가
                                                               가
  Fig. 11
                                      가
                                                               가
   . Fig. 12[9]
                                      가
                    가가
                                      가
       가
                                                                   50ppm, 100ppm,
150ppm, 200ppm
Fig. 13
                       가
                                                                    가 50ppm
100ppm
                           가
                                가
                                                                가
                                                                         100ppm
                       가
3-4.
                                   (SEM)
                                                               . as-received
    Fig. 14
                                             dimple
```

, Fig. 15

. fissure fissure 가 가 가 fissure fissure , Fig. 16 fissure 가 가 가 , fissure $200 \mu m$ 가 $100 \mu m$ fissure가 가 4. 가 가 가 1. 가 가 100ppm 가 가 2. 가 100ppm 3. (DBTT) 150 130 가 가 가 가 가 (h f) 가 $\binom{h}{f}$ -가 가 가 가 가 4. (DBTT) 가 가 가 가가 가 가

Reference

- [1] John R. Lamarsh, Introduction to Nuclear Enginering 2nd Ed., Addison-Wesley, (1983).
- [2] E.G. Price, AECL Report, AECL-8338, (1984)
- [3] ASTM Designation E 399-83.
- [4] C.E. Ells, J. Nucl. Mater., 28 (1968) 129.
- [5] J.S. Bradbrook, G.W. Lorimer, and N. Rindley, J. Nucl. Mater., 42 (1972) 142.
- [6] E. Smih and P. H. Davies, J. Nucl. Mater., 203 (1993) 206
- [7] S.Q. Shi and M.P. Puls: J. Nuclear Materials, 312 (1999)
- [8] Craig R. Barrett and William D. Nix, The Principles of Engineering Materials, chap 9 (1996)
- [9] Je-Yong Oh, Ph.D Thesis, KAIST (2000)

Fig. 1 The schematic diagram of Compact tension specimen

Fig. 2 The determination of crack initiation point

Fig. 3 The hydride morphology

Fig. 4 Volume fraction of hydride with hydrogen concentration

Fig. 6 Hydride length with hydrogen concentration

Fig. 5 Hydride thickness with hydrogen concentration

Fig. 7. Interhydride spacing with hydrogen content

(a) As-received

Fig. 8 J-R curves of (a)as-received ,(b)50ppm and (c)100ppm

Fig. 9. dJ/da as a function of temperature

Fig. 10 The fracture stress of hydrides and the yield stress of Zr-2.5Nb as a function of temperature

Fig. 11 the yield stress of pressure tube as a fuction of hydride volume fraction

Fig. 12 dJ/da as a function of yield stress

Fig.13 dJ/da as a function of hydrogen concentration

Fig.14 Fracture surface of as-received at (a) room temperature and (b) $100\,^{\circ}$ C

(a) room temperature

Fig.15 Fracture surface at (a) room temperature,

100µm

and (c) $130\,^{\circ}\mathrm{C}$

Fig. 16 fracture surface of (a) 50ppm ,(b) 100ppm and (c) 150ppm