SMART

Unbalance response and stability analyses of the rotor of SMART Main Coolant Pump

Abstract

SMART main coolant pump(MCP) is being designed as a vertical type and the rotor is operated immersed in hot and high pressure water. Hydraulic forces which are taken place at journal bearings, impellers and gaps between rotor and housing are inherently highly nonlinear and have unstable characteristics. Furthermore, since vertical rotor rather than horizontal type has no dominant static bearing load such as one's weight, traveling of journal center in the clearance circle of the bearing as varying of rotational speed make change in rotor characteristics greatly. In this paper, MCP rotor dynamic characteristics are estimated relating in hydraulic forces at journal bearings and gaps.

1.

2001

. MCP

Fig. 1 MCP rotor model

Fig. 2 Configuration of MCP journal bearing properties

$$\left\{\frac{1}{R^{2}}\frac{\partial}{\partial\theta}\left(G_{\theta}\frac{h_{0}^{3}}{\mu}\frac{\partial}{\partial\theta}\right) + \frac{\partial}{\partial z}\left(G_{z}\frac{h_{0}^{3}}{\mu}\frac{\partial}{\partial z}\right)\right\}\binom{p_{0}}{p_{x}}{p_{y}} = \begin{cases} \frac{1}{2}\omega(\sin\theta + 3\frac{\cos\theta}{h_{0}}\frac{\partial h_{0}}{\partial\theta}) - 3G_{\theta}\frac{h_{0}^{3}}{R^{2}\mu}\frac{\partial p_{0}}{\partial\theta}\frac{\partial}{\partial\theta}\left(\frac{\cos\theta}{h_{0}}\right)}{\frac{1}{2}\omega(\cos\theta - 3\frac{\sin\theta}{h_{0}}\frac{\partial h_{0}}{\partial\theta}) - 3G_{\theta}\frac{h_{0}^{3}}{R^{2}\mu}\frac{\partial p_{0}}{\partial\theta}\frac{\partial}{\partial\theta}\left(\frac{\sin\theta}{h_{0}}\right)}{\frac{\cos\theta}{\sin\theta}} \end{cases}$$

$$(\frac{\partial p}{\partial z} = 0)$$

$$\frac{1}{R^{2}} \frac{\partial}{\partial \theta} \left(G_{\theta} \frac{h_{0}^{3}}{\mu} \frac{\partial}{\partial \theta} \right) \begin{cases} p_{0} \\ p_{x} \\ p_{y} \\ p_{x} \\ p_{y} \\ p_{y}$$

. Table 1 , L/2 7

34

Table 1 Bearing fluidal and geometrical data

•

Properties	No of pad	Radius mm	Length mm	Pad radial clearance, µm	Ambient pressure Mpa	Temperatur e ° c	Absolute viscosity of water ,N- s/m ²	Density, kg/m ³
UBR	12	45	58	65	14.7	70	0.00041	984
LBR	12	45	58	65	14.7	150	0.000186	925

$$- \begin{cases} F_x \\ F_y \end{cases} = \begin{bmatrix} K_{xx} & K_{xy} \\ K_{yx} & K_{yy} \end{bmatrix} \begin{cases} X \\ Y \end{cases} + \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} + \begin{bmatrix} M_{xx} & M_{xy} \\ M_{yx} & M_{yy} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

$$?$$

(concentric annular seal) Black [2,5].

$$-\frac{\lambda}{\pi RP} \begin{cases} F_x \\ F_y \end{cases} = \begin{bmatrix} \mu_0 - \frac{1}{4} \mu_2 \omega^2 T^2 & \frac{1}{2} \mu_1 \omega T \\ -\frac{1}{2} \mu_1 \omega T & \mu_0 - \frac{1}{4} \mu_2 \omega^2 T^2 \end{bmatrix} \begin{cases} X \\ Y \end{cases} + \begin{bmatrix} \mu_1 T & \mu_2 \omega T^2 \\ -\mu_2 \omega T^2 & \mu_1 T \end{bmatrix} \begin{bmatrix} X \\ \dot{Y} \end{bmatrix} + \begin{bmatrix} \mu_2 T^2 & 0 \\ 0 & \mu_2 T^2 \end{bmatrix} \begin{bmatrix} X \\ \ddot{Y} \end{bmatrix}$$

0.5 . μ_0, μ_1, μ_2

$$\mu_{0} = \frac{(1+\xi)\sigma^{2}}{(1+\xi+2\sigma)^{2}}$$
$$\mu_{1} = \frac{(1+\xi)^{2}\sigma + (1+\xi)(2.33+2\xi)\sigma^{2} + 3.33(1+\xi)\sigma^{3} + 1.33\sigma^{4}}{(1+\xi+2\sigma)^{3}}$$
$$\mu_{2} = \frac{0.33(1+\xi)^{2}(2\xi-1)\sigma + (1+\xi)(1+2\xi)\sigma^{2} + 2(1+\xi)\sigma^{3} + 1.33\sigma^{4}}{(1+\xi+2\sigma)^{4}}$$

가

•

:

(L/D<<1)

[7].

,

$$\mu_0\left(\frac{L}{R}\right) = \frac{\mu_0}{1 + 0.28(L/R)^2}, \ \mu_1\left(\frac{L}{R}\right) = \frac{\mu_1}{1 + 0.23(L/R)^2}, \ \mu_2\left(\frac{L}{R}\right) = \frac{\mu_2}{1 + 0.06(L/R)^2}$$

:
Black
$$\begin{bmatrix} F_{x} \\ F_{y} \end{bmatrix} = \begin{bmatrix} -\frac{1}{4}m_{a}\omega^{2} & k\omega \\ -k\omega & -\frac{1}{4}m_{a}\omega^{2} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} + \begin{bmatrix} 2k & m_{a}\omega \\ -m_{a}\omega & 2k \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} + \begin{bmatrix} m_{a} & 0 \\ 0 & m_{a} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} \\
\begin{bmatrix} X \\ y \end{bmatrix} + \begin{bmatrix} m_{a} & 0 \\ 0 & m_{a} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} \\
\begin{bmatrix} m_{a} & 0 \\ 0 & m_{a} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\
\begin{bmatrix}$$

Table 2 Fluidal and geometrical data of the gap

.

Properties	Radius mm	Length Mm	Radial clearance, mm	Temperature ° c	Axial flow rate, m ³ /s	Absolute viscosity of water , N-s/m ²	water density, kg/m ³
Motor gap	53	519	1.4	70	8.333x10 ⁻⁴	0.00041	984
Impeller gap	23	223	0.8	200	4.1667x10 ⁻⁶	0.000137	874

Table 3 Variations of the natural frequencies by changing inner hole diameter in the MCP rotor

mode	3B	3F	4B	4F	5B	5F	
freq. (RPM)	6162.3	6322.3	16331.1	16616.3	30225.5	30761.8	

/

Table 4 Dynamic properties of gap at 3600 RPM

. MCP

Durantin	Stiffnes	ss, N/m	Damping	Mara Ka		
Properties	Kyy, Kzz	Kyz, - Kzy	Cyy, Czz	Cyz, -Czy	Mass, Kg	
Motor gap	-2.7 x10 ⁵	$3.3 \text{ x} 10^5$	1732.7	28802	76.4	
Impeller gap	-3.5 x10 ⁵	87051	461.8	3715.5	9.9	

Table 5 Dynamic properties of plain journal bearing at 3600 RPM

Properties	Radial	Stiffness, N/m				Damping, N-s/m			
	No.	Куу	Kyz	Kzy	Kzz	Суу	Cyz	Czy	Czz
UBR	2504	0.2	$6.0 \text{ x} 10^5$	$-5.9 \text{ x} 10^5$	-1.0	3009.6	0	0	3029
LBR	5062	2.9	$4.7 \text{ x} 10^5$	$-4.1 \text{ x} 10^5$	-3.4	2149.3	0.2	0	2371.6

1 Hashish, E. and Sanker, T. S., "Finite element and modal analyses of rotor bearing systems under stochastic loading conditions," Trans. ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design, 1984, Vol.106, pp.80-89

2 T. Someya. Journal-Bearing Databook. Springer-Verlag, NewYork, 1989

3 V.N. Constantinescu, Basic Relationships in Turbulent Lubrication and Their Extension to Include Thermal Effects. ASME Journal of Lubrication Tech., 1973, 95 (2):pp147-154

4 J.W. Lund, K.K.Thomsen, A calculation method and data for the dynamic coefficients of oil-lubricated journal bearings', Conf. Of design engineering 1978 pp1-28

, 1998

6 Rainer Nordmann, Harald Massman,'Identification of dynamic coefficients of annular turbulent seals', Proceedings of workshop for rotordynamic instability,' Texas A & M University, 1984, pp.295-311

7 Chan Siu Hung, 'Nonlinear analysis of rotordynamic instabilities in high-speed turbomachinery', Ph.D dissertation, Trondheim Univ. (Norway), 1992

8 H.F. Black, Effects of Fluid-filled clearance Spaces on centrifugal pump and submerged motor vibrations,' Proceedings of 8th turbomachinery symposium,Texas A & M University, pp.29-38, 1979

⁵