SMART

Monte Carlo Depletion Analysis of SMART Core by MCNAP Code

Abstract

Depletion analysis of SMART, a small-sized advanced integral PWR under development by KAERI, is conducted using the Monte Carlo (MC) depletion analysis program, MCNAP. The results are compared with those of the CASMO-3/MASTER nuclear analysis. The difference between MASTER and MCNAP on k_{eff} prediction is observed about 600pcm at BOC, and becomes smaller as the core burnup increases. The maximum difference between two predictions on fuel assembly (FA) normalized power distribution is about 6.6% radially, and 14.5% axially but the differences are observed to lie within standard deviation of MC estimations.

2001

SMART (System -	Integrated Modula	r Advanced	ReacT or)	,	, 가 ,
가	가				
. ^[1] SMART	가				
가	$(Al_2O_3 - B_4C)$				가 .
		가			
SMART		가		CAS	SMO-3/MASTER
(MASTER)	[2]		. S	MART	
		가		MASTER	
				MAST	ER
SMART					MCNAP ^[3]
SMART			,	MASTER	,
MASTER					

2. SMART

(1) SMART

SMART	92cm,		200cm	330M W	
57	(FA)		,		17 × 17
가	. < 1> <	2>			
	U-2357 4.95	św/o	UO_2	, 3	
		,		Ag-In-	Cd .
			가		, 가
3			$Al_2O_3 - B_4C$	(B - 10	: 0.029 g/cm)
, 가	Gd_2O_3/UO_2 (7)		: 4w/o)		
SMART				753.15	5°K , 1
,	270° C, 310° C	,		290 。	C .

(2) MCNAP

MCNAP

(sub-routine)

•

SMART				1/8			가	, 1/8	
		(re	flected	boundary	condition)				
		,				30cm		,	
(barrel)									
(RAM)		5							
MASTER			:	,	가				
MCNAP				10,000			(cycle)		600
			200						
ENDF/B-VI			B-VI		,				
30	00	1200 。 K	100 .	K	NJOY		,		
			가	가					

.

3.

<	1>						0	MCNAP
MAST	ER	600pcm						가
				0			가	
						,	가	
가		MCNAP						
	(Xe, Sm)	가					10
20					MCNAP			
<	2>	가			Xe- 135	Sm - 149		
	0	90			<	3>	< 4>	
	0						6.6%,	
14.5%		,	90		7.6%, 11.8%			
	MCNAF	P 1	0		0.092, 0.1	05,	9	0

•

.

0.053, 0.052 (standard deviation) MCNAP 0 MCNAP 5> 4 (40,000) < $1/\sqrt{N}$ (N:) . 10,000 1/2 . 10,000 가 . MCNAP

4.

.

가 SMART MCNAP , MCNAP MASTER MCNAP 600pcm , 가 MASTER Xe-135, Sm-149 0 6.6%, 14.5% MCNAP 4 가 10% 가 200cm SMART 5 가 . MCNAP .

 [1] Sung Quun Zee, et al., "Development of Core Design and Analysis Technology for Integral Reactor","KAERI/RR-1885/98 (Mar. 1999).

- [2] Jae Seung Song, et al., "Verification and Uncertainty Evaluation of CASMO-3/MASTER Nuclear Analysis System", KAERI/TR-806/97 (Jan. 1997).
- [3] Hyung Jin Shim, Chang Hyo Kim, Won Seok Park, and Hyung Kook Joo,""Monte Carlo Depletion Analysis of a PWR with the MCNAP","M&C99, Madrid, Spain (Sep. 1999).
- [4] Jong Sung Chung, Hyung Jin Shim, Chang Hyo Kim, Chungchan Lee, and Sung Quun Zee, "Verification of SMART Neutronics Design Methodology by the MCNAP Monte Carlo Code", 2000 ANS/ENS Int. Meeting, Washington DC, USA (Nov. 2000).

1> SMART

(a) A

<

Burnup	MASTER	MCNAP+	Control Rod Position (cm)				
(Days)	WASTER	MCNALT	R 1	R2	R3	R4	
0	1.0001621)	$1.00641^{(1)} \pm 0.00036^{(2)}$	194.0	134.0	74.0	40.0	
10	0.999844	1.00349 ± 0.00034	200.0	191.0	131.0	71.0	
30	1.000057	1.00383 ± 0.00037	200.0	200.0	160.0	100.0	
60	1.000151	1.00259 ± 0.00038	200.0	200.0	160.0	100.0	
90	1.000107	1.00186 ± 0.00035	200.0	200.0	158.1	98.1	

< 1>

1)

2) =1 standard deviation

Xe-135, Sm-149

Burnup	Xe-	135	Sm - 149			
(Days)	MASTER MCNAP		MASTER	MCNAP		
0	0	0	0	0		
10	2.40754E - 09 ¹⁾	2.34158E-09	8.96473E-09	8.76957E-09		
30	2.59512E - 09	2.57324E - 09	2.15089E-08	2.11588E - 08		
60	2.63291E-09	2.58100E-09	2.55845E-08	2.42613E - 08		
90	2.63645E-09	2.60662E - 09	2.66029E - 08	2.56264E - 08		
			•	•		

1) $\times 10^{24}$ number/cm³

0.466 0.497 ±0.092 -6.599	0.584 0.622 ±0.072 -6.553	1.087 1.124 ±0.051 -3.373	1.392 1.395 ±0.040 -0.191	0.928 0.897 ±0.049 3.338		$ \begin{array}{r} 0.20 \\ 0.178 \pm \\ 14.5 \\ 0.50 $	08 -0.105 547 68
	0.772 0.807 ±0.065 -4.537	1.137 1.161 ±0.047 -2.090	1.283 1.269 ±0.040 1.070	0.662 0.632 ±0.055 4.490		$ \begin{array}{c} 0.526 \pm \\ 7.39 \\ \hline 1.17 \\ 1.157 \pm \\ 1.59 \\ \hline 1.59 \\ 1.59 \\ \hline 1.59 \\ 1.59 \\ \hline 1.59 \\ 1$	-0.060 94 76 -0.041
	1	1.293 1.293 ±0.042 -0.017	0.958 0.932 ±0.046 2.748			1.7 1.735 ± -0.9	19 -0.032 49
MASTER MCNAP ± (%)	MASTER MCNAP ± = 1 standard deviation (%) =(MASTER-MCNAP)/MASTER × 100						29 0.034 26
		<	>			<	>

< 3> 0

						0.723		
0.772	0.858	1.206	1.275	0.797		0.637 ±0.052		
0.831 ±0.053	0.914 ±0.043	1.222 ±0.036	1.263 ±0.035	0.767 ±0.047		11.827		
-7.599	-6.579	-1.357	0.919	3.815		1.105 1.068 ±0.040		
	1.029	1.222	1.171	0.576		3.403		
	1.069 ±0.040	1.233 ±0.034	1.160 ±0.036	0.552 ±0.052		1 102		
	-3.856	-0.863	0.916	4.247		1.192 1.202 ±0.036		
		1.234	0.859			-0.843		
		1.231 ±0.036	0.844 ±0.043			1.244		
		0.235	1.794			1.289 ±0.035		
MASTER						-3.507		
MCNAP ±		0.735						
(%)	=(MASTEI	=(MASTER-MCNAP)/MASTER × 100						
		<	>			< >		
			-					

< 4> 90

					0.0	208
0.466	0.584	1.087	1.392	0.928	0.177	± 0.053
0.505 ±0.046	0.632 ±0.036	1.123 ±0.026	1.383 ±0.020	0.891 ±0.025	15.	.252
-8.380	-8.243	-3.337	0.614	4.001	0.5	568
	0.772	1.137	1.283	0.662	0.514	±0.030 512
	0.819 ±0.032	1.161 ±0.024	1.270 ±0.020	0.629 ±0.028		
	-6.104	-2.073	1.041	5.001	1. 1.133	176 ±0.021
		1.293	0.958		3.0	671
		1.294 ±0.021	0.931 ±0.023		1.1	7 19
	keff	-0.053	2.768		1.762	±0.016
MASTER	1.000162				-2.	535
MCNAP+	1.00569 ± 0.00	0.18			1.	329
	1.00309 ± 0.00	deviation -(M	ASTED MONAD		1.4 14	±0.017
(%)			ASTER-MCNAF	WIASTER X 100	-6.	431
		<	>		<	>

< 5>

0

(

=40000)

٢