/ MARS/SNUNAC

Development and Verification of Thermal-Hydraulic/Reactor Kinetics Coupled Code MARS/SNUNAC

Abstract

Thermal-hydraulic/reactor kinetics coupled code MARS/SNUNAC was developed by combining bestestimate thermal hydraulic code MARS of KAERI and SNUNAC, SNU's reactor kinetics code. The validation of MARS/SNUNAC is examined by analyzing the OECD MSLB benchmark II problem and comparing the results of MARS/SNUNAC with those of other coupled codes. The computational effectiveness of the nodal core-reflector boundary conditions designed for transient reactor analysis is tested in terms of computational time taken for the benchmark problem results. It is shown that MARS/SNUNAC calculations are very similar to the computational results of other coupled codes and the use of core-reflector boundary conditions results in the 15% reduction of computational time with little or no effects on accuracy.

2001

(be	st-estimate)		MARS	
MASTER	MARS/MASTER	1)	OECD	
2)				

			SNUNAC	MARS
	/	MARS/SNUNAC	, OECD	
	II		가	•
, SNUNAC			-	3)
		/		가

2. MARS/SNUNAC

.

	3	COBRA-TF 1	
RELAP5/MOD3		MARS	3
MASTER		(DLL;Dynam	nic Link Library)
	/	MARS/MASTER	
MARS/MASTER			
MARS/SNUNAC		, UNIX	
SNUNAC	(Windows)		,
MARS/MASTER			MARS
가		MARS/SNUNAC .	

1. MARS/SNUNAC

MARS	MASTER	FORTRAN90				
FORTRAN90			(Derived Data 7	. SNUNAC	C++	
		FORTRA	AN90			
			TRANSFER.dll	FORTRAN90		
				SNUNAC.dl	1	
				1	. 1	
	MARS	FORTRAN90			TRANSFER.dll	
		SNUNAC.dll				

3. -

(nonlinear nodal method) , -, SNUNAC ,

4).

OECD/NEACRP 3

NAC -

OECD

/

.

.

-

MARS/SNUNAC

4. OECD

, 가 . Exercise II 3

. Exercise III I II 3

(best-estimate) / . Exercise II . II III OECD 가 ⁵⁾ MARS/SNUNAC

. 1 (k effective) (HZP: Hot Zero Power) (HFP: Hot Full Power) 가

가 MARS/SNUNAC MA

.

2 , MARS/MASTER MARS가 .

Π

.

	1.			(k effe	ective)			
Participants	Country	Code	0	1	2	2a	3	4
PSU	USA	TRAC-PF1/NEM	1.0354	1.0033	1.0061	-	0.9880	1.0022
CSA/GPUN/EPRI	USA	RETRAN-3D MOD2.0	1.0312	1.0293	1.0067	1.0067	0.9823	0.9970
CEA-1	France	CRONOS2-FLICA4	1.0353	1.0334	1.0044	1.0046	0.9869	1.0018
CEA-2	France	CRONOS2-FLICA4/1D	-	-	1.0043	-	-	-
GRS	Germany	QUABOX-CUBOX	1.0346	1.0327	1.0033	1.0033	0.9856	1.0008
KAERI 1	Korea	MARS/MASTER	1.0355	1.0335	1.0071	_	0.9875	1.0022
KAERI 2	Korea	MASTER	1.0355	1.0335	1.0051	1.0047	0.9875	1.0022
NETCORP	USA	DNP/3D	1.0286	1.0282	1.0000	1.0012	0.9825	0.9971
PURDUE 1	USA	TRAC-M/PARCS	1.0355	1.0335	1.0061	1.0061	0.9875	1.0022
PURDUE 2	USA	RELAP/PARCS	1.0355	1.0335	-	-	0.9875	1.0022
ROSSENDORF	Germany	DYN3D/R	1.0354	1.0333	1.0052	1.0048	0.9868	1.0018
SIEMENS 1	Germany	RELAP5/PANBOX-E	1.0354	1.0335	1.0049	1.0049	0.9869	1.0018
SIEMENS 2	Germany	RELAP5/PANBOX-I	-	-	1.0058	1.0058	-	-
VTT	Sweden	TRAB-3D	1.0355	1.0334	1.0031	1.0028	0.9867	1.0018
ANL	USA	SAS-DIF3DK	1.0349	1.0329	1.0051	1.0050	0.9868	1.0016
		MARS/SNUNAC	-	-	1.0069	-	-	-
		SNUNAC	1.0353	1.0333	-	1.0056	0.9868	1.0017

2

(Fz)

가

2.

(Fz)

•

•

Doutioinonto	Commente	Cada	•	1	2	2.	2	4
Participants	Country	Code	U	1	<u>_</u>	2a	3	4
PSU	USA	TRAC-PF1/NEM	2.674	2.435	1.058	-	2.706	2.738
CSA/GPUN/EPRI	USA	RETRAN-3D MOD2.0	2.640	2.519	1.052	1.052	2.749	2.730
CEA-1	France	CRONOS2-FLICA4	2.676	2.459	1.065	1.058	2.750	2.738
CEA-2	France	CRONOS2-FLICA4/1D	-	-	1.067	-	-	-
GRS	Germany	QUABOX-CUBOX	2.670	2.440	1.054	1.054	2.760	2.740
KAERI 1	Korea	MARS/MASTER	2.673	2.433	1.105	-	2.742	2.728
KAERI 2	Korea	MASTER	2.673	2.433	1.059	1.076	2.742	2.728
NETCORP	USA	DNP/3D	1.584	1.506	1.153	1.110	1.506	1.556
PURDUE 1	USA	TRAC-M/PARCS	2.673	2.434	1.107	1.107	2.741	2.728
PURDUE 2	USA	RELAP/PARCS	2.673	2.434	-	-	2.741	2.728
ROSSENDORF	Germany	DYN3D/R	2.689	2.447	1.054	1.071	2.759	2.746
SIEMENS 1	Germany	RELAP5/PANBOX-E	2.685	2.454	1.062	1.062	2.751	2.739
SIEMENS 2	Germany	RELAP5/PANBOX-I	-	-	1.095	1.095	-	-
VTT	Sweden	TRAB-3D	2.734	2.492	1.094	1.113	2.823	2.800
ANL	USA	SAS-DIF3DK	2.662	2.424	1.053	1.053	2.729	2.716
		MARS/SNUNAC	-	-	1.103	-	-	-
		SNUNAC	2.675	2.433	-	1.076	2.744	2.732

S	
J	

(Fxy)	
-------	--

•

Participants	Country	Code	0	1	2	2a	3	4
PSU	USA	TRAC-PF1/NEM	1.366	1.439	1.331		5.309	3.596
CSA/GPUN/EPRI	USA	RETRAN-3D MOD2.0	1.372	1.446	1.337	1.337	5.334	3.585
CEA-1	France	CRONOS2-FLICA4	1.360	1.429	1.326	1.334	5.440	3.621
CEA-2	France	CRONOS2-FLICA4/1D	-	-	1.324	-	-	-
GRS	Germany	QUABOX-CUBOX	1.352	1.424	1.327	1.327	5.634	3.687
KAERI 1	Korea	MARS/MASTER	1.363	1.437	1.339	-	5.449	3.619
KAERI 2	Korea	MASTER	1.363	1.437	1.338	1.327	5.449	3.619
NETCORP	USA	DNP/3D	1.449	1.457	1.405	1.390	4.735	3.008
PURDUE 1	USA	TRAC-M/PARCS	1.363	1.437	1.372	1.372	5.448	3.616
PURDUE 2	USA	RELAP/PARCS	1.363	1.437	-	-	5.448	3.616
ROSSENDORF	Germany	DYN3D/R	1.362	1.436	1.336	1.326	5.484	3.629
SIEMENS 1	Germany	RELAP5/PANBOX-E	1.361	1.431	1.332	1.332	5.466	3.639
SIEMENS 2	Germany	RELAP5/PANBOX-I	-	-	1.349	1.349	-	-
VTT	Sweden	TRAB-3D	1.411	1.475	1.367	1.353	4.908	3.479
ANL	USA	SAS-DIF3DK	1.364	1.436	1.338	1.338	5.392	3.592
		MARS/SNUNAC	-	-	1.337	-	-	-
		SNUNAC	1.361	1.435	-	1.330	5.501	3.639

4 Axial Offset

Axial Offset

.

Participants	Country	Code	0	1	2	2a	3	4
PSU	USA	TRAC-PF1/NEM	0.7570	0.6980	0.0250	-	0.7660	0.7670
CSA/GPUN/EPRI	USA	RETRAN-3D MOD2.0	0.7436	0.6841	-0.0028	-0.0028	0.7356	0.7548
CEA-1	France	CRONOS2-FLICA4	0.7550	0.6999	-0.0158	-0.0115	0.7659	0.7673
CEA-2	France	CRONOS2-FLICA4/1D	-	-	-0.0172	-	-	-
GRS	Germany	QUABOX-CUBOX	0.8070	0.7530	-0.0080	-0.0080	0.8170	0.8170
KAERI 1	Korea	MARS/MASTER	0.7556	0.6985	0.0295	-	0.7662	0.7668
KAERI 2	Korea	MASTER	0.7556	0.6985	-0.0132	-0.0249	0.7662	0.7668
NETCORP	USA	DNP/3D	0.3183	0.2693	-0.0558	-0.0278	0.2660	0.2971
PURDUE 1	USA	TRAC-M/PARCS	0.7565	0.6983	0.0292	0.0292	0.7661	0.7668
PURDUE 2	USA	RELAP/PARCS	0.7603	0.6983	-	-	0.7661	0.7668
ROSSENDORF	Germany	DYN3D/R	0.7603	0.7018	-0.0090	-0.0206	0.7702	0.7709
SIEMENS 1	Germany	RELAP5/PANBOX-E	0.7591	0.7018	-0.0147	-0.0147	0.7683	0.7683
SIEMENS 2	Germany	RELAP5/PANBOX-I	-	-	0.0237	0.0237	-	-
VTT	Sweden	TRAB-3D	-	-	-	-	-	-
ANL	USA	SAS-DIF3DK	0.7540	0.6960	-	-	0.7630	0.7640
		MARS/SNUNAC	-	-	0.0262	-	-	-
		SNUNAC	0.7564	0.6977	-	0.0124	0.7663	0.7672

.

. 5 가

(Fxy)

.

5 , 7 , 6 2

,

100

5. (Fxy) Country 5 6 7 **Participants** Code PSU USA TRAC-PF1/NEM 3.3276 1.5214 2.3675 CSA/GPUN/EPRI 3.4301 USA RETRAN-3D MOD2.0 1.5396 -3.4120 3.2980 CEA-1 France CRONOS2-FLICA4 1.4830 1.4920 CEA-2 France CRONOS2-FLICA4/1D 3.4140 3.2930 GRS Germany QUABOX-CUBOX 1.5064 3.3470 1.4300 **KAERI 1** Korea MARS/MASTER 1.5092 3.5390 2.4004 **KAERI 2** Korea MASTER 1.5034 3.1455 2.4345 NETCORP USA DNP/3D 1.5449 3.0394 2.8767 PURDUE 1 USA TRAC-M/PARCS 1.5349 3.3140 2.4298 **RELAP/PARCS** PURDUE 2 USA 1.4978 3.2825 2.4003 ROSSENDORF 1.4911 3.1363 2.2555 Germany DYN3D/R SIEMENS 1 Germany RELAP5/PANBOX-E 1.4996 3.1146 2.3055SIEMENS 2 Germany **RELAP5/PANBOX-I** 1.5062 3.3864 2.3422 VTT TRAB-3D Sweden 1.5056 3.2284 3.0285 ANL USA SAS-DIF3DK 3.0592 1.5115 3.3775 MARS/SNUNAC 1.4935 3.4837 2.2614

가

5

2~3%

		7	10%	, 0			
	가			,			MARS
MARS/SNUNAC	MARS	S/MAST	ER		1~5%		
						1	

MARS/SNUNAC OCED

5. -

4 , (nonlinear analytic nodal method) OECD MARS/SNUNAC . (nonlinear nodal expansion method) , -

R	

6	
~	٠

Parameter	ANM(E)	ANM(B)	NEM(E)	NEM(E)
K effective	1.00687	1.00696	1.00663	1.00683
Core Outlet Moderator Temperature	320.0	320.0	320.0	320.0
Core Average Moderator Density	0.714	0.714	0.714	0.714
Core Average Fuel Temperature	541.4	541.4	541.5	541.4
Axial Offset	0.0262	0.0307	0.0264	0.0312
Axial Power Factor(Fz)	1.103	1.111	1.101	1.112
Radial Peak Factor(Fxy)	1.337	1.337	1.338	1.338

.

-

6

7

1.		
	/ (sec)	(sec)
MARS/SNUNAC-ANM(E)	2122	1389
MARS/SNUNAC-ANM(B)	1752	1038
MARS/SNUNAC-NEM(E)	1948	1225
MARS/SNUNAC-NEM(B)	1572	933

6.

MARS/SNUNAC

MARS/MASTER

- J. J. Jeong, *et, al.*, "Development of a Draft Version of MARS/MASTER: A Coupled Code of MARS
 and MASTER 2.0," *Proc. Korean Nucl. Soc. Fall Mtg.*, Seoul, Korea, Oct. 30-31, 1998, p. 157
 (Paper 86 in CDROM), 1998.
- K. Ivenov and A. Baratta, "PWR MSLB Benchmark, Final Specifications," NEA/NSC/DOC(97) 15, OECD Nuclear Energy Agency, 1997.
- Eun Ki Lee, Chang Hyo Kim, and Hyung Kook Joo, "New Core-Reflector Boundary Conditions for Transient Nodal Reactor Calculations," *Nucl. Sci. Eng.*, 121, pp.266-277, 1995.
- 4. Ku Young Chung and Chang Hyo Kim, "Application of Multigrid Correction Scheme Nonlinear Nodal Method Solutions with Use of Core-Reflector Boundary Conditions," *Topical Meeting on Advances in Reactor Physics and Mathematics and Computation into the Next Millenium*, PHYSOR 2000, Pittsburgh, USA.
- B. Tayler and K. Ivanov, "Summary of the Results for 2nd Exercise," Ad-hoc Meeting on OECD/NRC MSLB Benchmark, Madrid, Spain, September, 1999.