U 3 S i/ A l

Analysis of the Spent U₃Si/Al Fuel Using the Heavy Atom Isotope Correlation with Burnup

Abstract

The correlation of isotope composition of uranium and plutonium with the burnup in the spent U_3Si/Al fuel from Hanaro reactor has been investigated experimentally. The total and fractional(²³⁵U) burnup were determined by Nd-148 and mass spectrometric method

2001

respectively. The contents of the U and Pu elements and their isotope compositions, after their separation from the spent fuel samples were determined by isotope dilution mass spectrometric method using ²³³U and ²⁴²Pu as spikes. The depletion of ²³⁵U, the Pu/U ratio, the capture-to-fission ratio for ²³⁵U, and the ratio of fission contributions for ²³⁵U, ²³⁹Pu and ²⁴¹Pu were determined. The burnup values and some parameters were expressed by the correlation with uranium and plutonium isotopes. The correlations between isotope compositions themselves were also expressed.

1. 가 Pu safeguards 3가 U, Pu, Kr, Xe, Cs, Nd, Eu, Ru Zr (total burnup) (²³⁵U burnup), ²³⁵U ²³⁹Pu (depletion), ²³⁹Pu (buildup), Pu/U $U/U_0(U_0$:) 가 [1-7]. 234 U ²³⁸Pu 가 U₃Si/Al Hanaro 가

2.

•

U ₃ Si/Al					hot cell
(shielded line)	[8.9].				
	4 M HCl	1	가	10 M HNO ₃	90° C
24					
			glove bo	Х	
	,			,	
			Fig. 1 .	Nd-148	U
Pu	I	[10-12].	U Pu	²³³ U ²⁴² H	Pu

가

Symbol	Definition	Reference
Fτ	Total burnup in atom % fission	[10,11]
Fs	Fractional burnup(atom % fission) from fission of 235 U	[7,12]
D5	Depletion $(W_5^{\circ}/W_5^{\circ} - W_5)$ of ²³⁵ U in weight	[7]
5	Capture-to-fission ratio of ²³⁵ U	[13]
Pu/U	Plutonium-to-uranium ratio in weight	[1,5-7]
$N_{F235}/N_{F239}/N_{F241}$	Ratio of fission contributions of $^{\rm 235}U$, $^{\rm 239}Pu$ and $^{\rm 242}Pu$	[14]

•

3.1.

Table 1	6	U3Si/A1	U
(atom %)		. ²³⁵ U	19.95 atom % 5-14 atom %
			U Pu 7
U Pu			U
Pu			

3.2.

Table 2					가		$(F_{T}, F_{5}, D_{5},$
5, Pu/U	N F 235/ N F 239/]	N F 2 4 1		(F _T)	Nd- 148	[10.11],	(F 5)
	[12]	가		(7-1	14)		
Pu/U			U	Pu			²³⁵ U, ²³⁹ Pu
²⁴¹ Pu			Ν	F 2 3 5/ N F 2 3 9/	N F 24 1	²³⁸ U	

.

3.3.

3.3.1.

	U					가	가	²³⁵ U	²³⁶ U
²³⁸ U	가					(Fig. 2).	Pu		
	가	가		²³⁹ Pu		²⁴⁰ Pu, ²⁴¹ Pu	²⁴² Pu	가	
	(Fig. 3).			가				²³⁵ U	$(D_5), Pu/U$
	/		(5)	U	Pu			$(^{235}U/^{238}U,$	$^{236}U/^{238}U$
²⁴⁰ Pu/	²³⁹ Pu)							(F	ig 4 5).

(Pu) 가 .

3.3.2.

7는 . (F T)

(F _T)	²³⁵ U	(D5),	/	(5)	Pu/U	
-------------------	------------------	-------	---	------	------	--

Fig. 6 **7**; Pu , , Pu/U

•

3.3.3.

, , U, Pu , ^{236}U ^{235}U ^{235}U , $^{236}U/^{238}U$ $^{235}U/^{238}U$ (Fig. 7), $^{238}U/^{236}U$ $^{235}U/^{236}U$, $^{241}Pu/^{239}Pu$ $^{242}Pu/^{240}Pu$, ^{239}Pu ^{235}U , $^{235}U/^{238}U$ $^{240}Pu/^{239}Pu$ (Fig. 8)

4.

1) U

2) Pu (ng) U 7¹. 3) U₃Si/Al ,²³⁵U,

•

 239 Pu , U/U_{0} Pu/U , 235 U / ,

4) U_3Si/Al

.

· · · · ·

- 1. T. Suzaki et al., J. Nucl. Sci. & Tech., 23(1), 53 (1986).
- W. J. Maeck et al., "Isotope Correlation Studies Relative to High Enrichment Test Reactor Fuels", ICP-1156 (1978).
- 3. J. Krtil et al., Radiochem. Radioanal. Lett., 36(6), 369 (1978).
- 4. J. Krtil et al., Radiochem. Radioanal. Lett., 49(1), 49 (1981).
- 5. P. De. Regge and R. Boden, "Precise Isotopic Correlations in Plutonium Recycling of Light-Water Reactor Fuel", IAEA-SM-231/25, Nuclear Safeguards Technology 1978, Vol. II, IAEA, 747 (1979).
- D. E. Christensen and R. A. Schneider, "Summary of Experience with Heavy-Element Isotopic Correlations", IAEA-SM-201/10, Safeguarding Nuclear Materials, Vol. II, IAEA, 377 377 (1976).
- 7. J. S. Kim, J. Korean Nucl. Soc., 29(4), 327 (1997).
- 8. J. S. Kim et al., "Chemical Separation for the Burnup Determination of the U₃Si/Al Spent Fuels", Proc. of the Korean Nucl. Soc. Autumn Meeting, Seoul Korea, Oct. 1999.
- 9. K. S. Choi., A nal. Sci. & Tech., 13(5), 584 (2000).
- 10. J. S. Kim et al., J. Korean Nucl. Soc., to be published (2001).
- ASTM 321-96, "Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel(Neodymium-148 Method)", 1 (1996).
- ASTM 244-80(Reapproved 1995), "Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel(Mass Spectrometric Method)", 1 (1998).
- J. E. Rein, "Status of Burnup Measurement Methodology", IAEA-SM-149/40, Analytical Methods in the Nuclear Fuel Cycle, IAEA, 449 (1972).
- 14. P. De. Regge et al., "Burnup Determination of Water Reactor Fuel.", IWGFPT/31, IAEA, 23 (1989).

Parameter			Spent Fue	el Sample		
	L1-M	L1-L	L1-H	L2-M	L2-L	L2-H
Fτ	11.2577	9.0301	5.5145	11.4942	9.0935	5.4241
F 5	10.4497	8.3666	5.1167	10.5318	8.4868	5.0091
D 5	1.6834	2.1226	3.5130	1.6661	2.0991	3.5790
5	0.1952	0.2070	0.2274	0.1937	0.2045	0.2300
Pu/U	4.768x 10 ⁻³	3.715x 10 ⁻³	2.294x 10 ⁻³	4.837x 10 ⁻³	3.907×10^{-3}	2.375×10^{-3}
NF235/NF239/NF241*	89.8/9.6/0.7	93.2/6.5/0.3	96.5/3.4/0.1	89.6/9.7/0.7	93.1/6.6/0.3	96.4/3.5/0.1

Table 1. Burnup Parameters Determined by Chemical Methods

* : neglected the fast fissions originating in 238 U

Isotope		Atom %						
	L1-M	L1-L	L1-H	L2-M	L2-L	L2-H		
U - 234	0.1194	0.1468	0.1542	0.1355	0.1427	` 0.1500		
U - 235	8.1105	10.5626	14.2811	7.9874	10.4575	14.3856		
U - 236	2.4883	2.0623	1.3304	2.5278	2.0533	1.3220		
U - 238	89.2819	87.2282	84.2343	89.3493	87.3464	84.1424		
Total	100.0001	99.9999	100.0000	100.0000	99.9999	100.0000		

Table 2. Isotopic Composition of U Separated from the Spent U_3Si/Al Fuel Samples

Fig. 1. Basic Processes for Isotope Correlation Study.

Fig. 3. The Dependence of Pu Isotopes on Total $Burnup(F_{T})$

Atom % 236U

Fig. 5. Correlation between $\boldsymbol{\alpha}_{5}$ and $^{235}\text{U}/^{238}\text{U}$

Fig. 6. Correlation between Pu/U Mass Ratio and Total $Burnup(F_{T})$

Fig. 7. Correlation between ²³⁶U/²³⁸U and ²³⁵U/²³⁸U Atom Ratio

Fig. 8. Correlation between ²⁴⁰Pu/²³⁹Pu and ²³⁵U/²³⁸U Atom Ratio