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Abstract

To remedy the deficiency of single assembly homogenization with zero current boundary

condition, proposed is a new approach solving a simple few-region one-dimensional one-group

model consisting of pin columns of two adjacent assemblies. The cross-sections representing

each pin column come from the single assembly homogenization. After solving analytically for

the thermal flux across each interface of materials by the integral transport method, equivalence

theory parameters or form factors are corrected during the nodal diffusion calculation to take

into account the effect of the thermal flux gradient.

The accuracy and the applicability of the proposed method were tested against a small

benchmark problem consisting of MOX fuel and bare water reflector. The result shows that the

method solving the one-dimensional model consisting of only six regions per interface can

reduce significantly the errors in reconstructed pin powers near strong material interfaces.



I. Introduction

The reactor core analysis system based on the two-level calculations of the lattice physics

transport calculation and the nodal diffusion calculation is widely adopted to predict the neutron

behavior in the commercial light water power reactors. The key idea employing the two level

calculations is to avoid the limitations in calculational resources involved in the detailed pin-

wise transport calculation in the complicated spectral and geometric structure of a real rector

core. The lattice physics calculation in this system plays a role in providing the homogenized

equivalence theory parameters for the nodal diffusion calculation and the flux form factors for

the detailed pin-wise flux reconstruction. This calculation is usually done in a somewhat

complicated energy-group structure but in a small geometry consisting of an assembly or a few

assemblies with imposing zero-current boundary conditions on the outer boundary of the

geometry. On the other hand, the nodal diffusion calculation takes part in calculating the

smoothly varying flux distribution over the whole core by taking the homogenized parameters

resulting from the lattice physics calculation as input. This calculation is done in a large

geometry e.g., the whole core geometry but in a simple energy group structure consisting

usually of two energy groups. The main output of this system is the detailed pin-wise flux

distribution that is a simple superposition of the smoothly varying flux shape resulted from the

nodal diffusion calculation and the pin-wisely bumpy flux form factors from the lattice physics

transport calculation.

This procedure works relatively well in the interior core region where no significant fuel

material discontinuities across assembly interfaces are involved. However, it shows poor

performance in predicting the detailed pin-wise fluxes near the fuel/reflector interface or the

mixed oxide (MOX)/uranium oxide (UO2) fuel interface, where step change in material occurs.

Figure 1 is an example of errors in the pin-wise powers reconstructed by a typical two-level

analysis procedure with single assembly homogenization. Large errors are clearly shown in this

figure near regions with strong material discontinuity. It is well understood that this is caused by

the fact that the equivalent theory parameters homogenized by the single assembly transport

calculation with zero neutron current boundary condition cannot reflect the actual flux gradient

across an assembly interface. Errors caused by the homogenization imperfection are

unavoidable even though a very accurate lattice physics transport calculation and an error free

nodal diffusion calculation are combined in a system.

To remedy this shortcoming of the single assembly homogenization with zero current

boundary condition, the multi-assembly (or color-set) homogenization may be utilized so that

the flux gradient across an assembly interface is taken into account in the equivalence theory



parameters. Even though this can reduce significantly the large errors in the reconstructed pin-

wise powers near the interface, tremendous calculations are required during the homogenization

stage in sweeping a large number of multi-assembly geometries, each of which represents a

combination of assemblies in a various state of burnup that may appear in a part of the reactor

core through reload cycles. Another approach to capture the effects of the flux gradient on the

equivalence theory parameters is to redo the single assembly homogenization calculation with

the current boundary conditions updated after the nodal diffusion calculations. The boundary

perturbation theory may help reducing the calculational effort involved in the second

homogenization for a same type of assemblies with different current boundary conditions.

As shown in figure 1, the fuel pins with large errors in the reconstructed powers are usually

concentrated in the very narrow range near the material interface mostly in the first row of fuel

pins facing the interface directly. A distinct systematic pattern in the sign and magnitude of

errors can also be observed in these pins. As the more accurate homogenization and nodal

diffusion calculations are combined in the system based on the single assembly homogenization,

such a trend in errors gets more dominant due to cancellation of error sources except

homogenization imperfection. If the fast and thermal fluxes are separately examined, errors by

any causes in modeling the fast flux that shows a relatively smooth distribution appear in a

somewhat wide range due to its long diffusion length. Therefore, it can be concluded with

confidence that the errors concentrated on a narrow range near the material discontinuity are

caused by the fact that the single assembly homogenization with zero current boundary

condition cannot handle the steep thermal flux gradient across the interface.

Fortunately, this thermal gradient ends within the depth of a few pins from the interface.

The effect of such a gradient on the homogenized equivalence theory parameters can easily be

captured during the homogenization stage with the inclusion of a few rows of edge pins of

adjacent fuel assemblies in a certain fuel assembly to be homogenized, although it requires to

sweep the same number of combinations of assemblies as those required in the multi-assembly

homogenization. Instead of this approach, a powerful but simple approach is proposed in this

study that is still based on single assembly homogenization. The basic idea of this approach is

that the flux gradient near material discontinuity can be modeled well by a multi-region one-

dimensional transport model consisting of pin columns of two adjacent assemblies sharing the

interface, each region of which represents the pin column in a same distance from the interface.

This model is solved by one of analytic methods to solve the one-dimensional transport

equation for each interface of materials. It can be solved either during the nodal diffusion

calculation to improve the homogenized equivalence parameters or just after the nodal diffusion

calculation to improve the flux form factors used in the pin-wise power reconstruction. The



additional effort required in the single assembly homogenization stage is minor to edit a few

sets of the cross-sections for edge pin rows.

A streak of luck makes the one-dimensional model simulating the flux gradient across the

material discontinuity very simple. Even the nodal method that uses the lower order

polynomials for representing the fast group flux and uses the equivalence theory parameters

obtained by the single assembly homogenization can accurately handle the fast flux gradient

across the interface. Therefore, the one-group model to be solved for only the thermal flux is

possible with the fast flux assumed known from the nodal calculation. The further simplification

of the one-dimensional model comes from the fact that the assembly interface is usually quite

long compared to the diffusion length of thermal neutron. This enables the thermal neutron

moving across the interface to be modeled in the infinite slab geometry with no transverse

leakage. In addition, it is sufficient to include only a few rows of edge pins of two assemblies

sharing the interface into the one-dimensional model, because the thermal gradient ends in a

very short distance from the interface and easily reaches its asymptotic value corresponding to

the fast flux distribution. The conventional fuel assembly design that usually contains relatively

uniform fuel pins in the most and the second most edge rows may also allows retaining the one-

dimension model.

Figure 1.  An Example of Pin Power Errors (%) Calculated by Single Assembly

Homogenization Parameters
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II. One-Dimensional Multi-Region One-Group Model

Figure 2 shows the one-dimensional model constructed near an interface of two adjacent

fuel assemblies. Analogous one-dimensional models may be constructed on all interfaces of

materials including the fuel/reflector interfaces. Each region in the model e.g., region i in figure

2 is the projected image of a column of pins in the same distance from the interface into the one-

dimensional model, which is represented by the cross-sections edited from the single assembly

homogenization. The outmost region at each end of the model is made to complement an

assembly with the columns of pins that are not treated explicitly.

Figure 2.  One-Dimensional Multi-Region Interface Model

Only the thermal flux gradient is solved across the interface in the model, assuming that

the fast flux of each region is given by the conventional reconstruction i.e., the simple

superposition of the homogeneous region flux from the nodal calculation and the region flux

form factor from the homogenization calculation. This conventionally reconstructed fast flux

shows good agreement with that of the reference fine mesh transport calculation in most cases.

For isotropic fission and scattering, the one-dimensional thermal neutron transport equation

without external source is given for region i in figure 2 by
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Each term in Eq. (1) reflects a component contributing to the thermal neutron balance in µ at x

in region i. For example, σpgg’i is the production cross-section due to fission and scattering that

can be broken down into
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Any methods may be used in solving this one-dimensional transport equation. One of the

most likely candidates is the analytic SN method that has no spatial discretization error.(Ref.1)

This method discretizes the thermal angular flux into angles and substitutes the thermal scalar

flux with the weighted sum of the discretized angular fluxes. Then, it solves analytically the

resulting ordinary differential equations in x for all the discretized angular fluxes. The only

approximation used in this method is the angular discretization of the angular flux. The total

number of unknowns to be solved for in this method is the product of the number of spatial

regions and the number of angles discretized in SN.

Another candidate that will be described here in detail is the integral transport method.

Setting xmin and xmax in figure 2 to -∞ and ∞, respectively, so that the boundary conditions may

be neglected, the solution of Eq. (1) at x in region i becomes
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where τ(x,x’) is the optical path defined as the sum of products of the total cross-section and the

path length over all regions between x in region i and x’ in region j. Only the unknowns as

many as spatial regions are involved in this method. In spite of small number of unknowns, this

equation has a crux of containing the thermal scalar flux to be solved for in the right-hand-side.

This requires assumption on the shape of the thermal scalar flux even before it is solved,

although it is not a necessarily absolute known function. Reminiscent of the diffusion solution,

it can be approximated as a combination of region-wise exponential function part that attenuates

spatially and the asymptotic part that varies proportionally to the fast flux.
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The smooth varying fast flux in this equation is approximated as a region-wise linear function

whose coefficients are assumed known from the conventional reconstruction calculation.
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The coefficients ai and bi in the thermal scalar flux of Eq. (5) that will be used in evaluation of

the right-hand-side of Eq. (4) are expressed into the interface thermal scalar fluxes.
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where

)(22 iii xφφ = (12)

Analytical integration of Eq. (4) with substituting Eq. (5) and Eq. (9) into the right-hand-side

results in
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Functions F[a,t] and W[t] here can be explicitly expressed into gamma and logarithmic

functions.

The interface fluxes contained in ai and bi in this equation will be determined by forcing

them to be equal to their left-hand-side partners at interfaces. Assuming that the thermal flux



reaches to its asymptotic value at one end of the one-dimensional model, this requires the direct

inversion of a full square matrix with the rank of the number of interfaces. The accuracy of the

resulting thermal flux depends on the number of regions.

The region average flux can be obtained by integrating Eq. (13) analytically after defining

the following integrals for convenience:
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Assuming the uniform fast flux, the thermal flux solved by a one-dimensional model is

compared with the reference flux in Figure 3. This model represents the MOX/UO2 fuel

assembly interface and consists of three material regions for each fuel assembly. The reference

flux is obtained by the SN transport calculation with the mesh interval of 0.063cm and the

angular quadrature set of S16. Even the flux of the model treating only three calculational

regions for each assembly shows a pretty good agreement with the reference flux.
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Figure 3.  Thermal Flux Error (%) of One-Dimensional Interface Model

In solving the integral transport equation (4), matching the right-hand-side thermal

currents to the left-hand-side ones at interfaces may give better results than matching

fluxes. This expectation comes from the equivalence theory observation that the region-

wise neutron balance using the assumed flux (5) becomes equivalent to that of the

solved flux (13) when their interface currents match. The study to solve Eq. (4) by the

interface current matching is in progress. The assumed flux (5) may be discontinuous

across interfaces in this study.



III. Discontinuity Factor and Form Factor Update

The results of the one-dimensional model may be used either to update the thermal group

discontinuity factor at the interface during the nodal calculation or to update the form factors of

edge-pins during the flux reconstruction calculation. A similar procedure to that of the multi-

assembly homogenization is followed to update the discontinuity factor. It starts from solving

the homogeneous single assembly model that is modeled one-dimensionally with cross-sections

weighted-averaged by the thermal flux (13). Imposing the current boundary condition on the

interface-side of the assembly, this model is solved by the nodal method that will use the

resultant discontinuity factor. The discontinuity factor defined as the ratio of the interface

heterogeneous thermal flux calculated by Eq. (13) to the homogeneous flux solved here can

replace the thermal group discontinuity factor obtained from the single assembly homogenization.

The thermal group form factors of edge pins are updated so that the flux reconstruction for

the edge fuel pins reproduces the average of the thermal flux (13) over a region in the one-

dimensional model representing a row of edge pins. For this purpose, the conventional flux

reconstruction using the form factors of single assembly homogenization is simulated one-

dimensionally. The diffusion equation to solve for the homogeneous flux used in this flux

reconstruction is given by
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The cross-sections in this equation come from the single assembly homogenization. The fast

group flux is again approximated as a known linear function. Solving this equation for the

homogeneous thermal flux φ2(x) with the flux boundary condition at the interface to be

concerned, the homogeneous flux averaged over the outmost edge pins is expressed in the

following form:
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where ^ on the flux means the homogeneous flux. φ10 and φ20 are the interface fast and thermal

fluxes from the nodal calculation and φp1 is the pin average fast flux. Note that the boundary

condition used in solving the homogeneous flux depends on the reconstruction method being

used. Some methods may use the interface current as the boundary condition instead of the

interface flux.



The reconstructed flux simulated one-dimensionally with the form factors of the single

assembly homogenization becomes

22 p̂pp f φφ = (23)

where fp is the form factor averaged over edge fuel pins. Of course, this reconstruct flux does

not sufficiently take into account the effect of the thermal flux gradient across the interface,

because it is calculated by cross-sections and form factors from the single assembly

homogenization. Therefore, the edge-pin form factor correction factor is defined as the ratio of

this reconstructed flux to the edge-pin average flux calculated from the heterogeneous one-

dimensional flux of Eq. (13), so that the reconstructed flux with the corrected form factor can

reproduce at least the heterogeneous one-dimensional flux. The form factors for all the pins in

the edge row are multiplied by this correction factor and renormalized with their remainders.

This correction may also be done analogously for the second outmost fuel pins although it is not

necessary for most cases.

IV.  Numerical Test Results and Discussion

To test the accuracy and the applicability of the presented model to overcome the

limitations of the single assembly homogenization, a benchmark problem designated as “the

Benchmark Calculations of Power Distribution within Fuel Assemblies (PDWA)”(Ref. 2) is

explored. In order to compare different techniques for pin flux prediction in systems partially

loaded with MOX fuel assemblies, this benchmark problem was launched in 1996 by the

Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC) of the Organization for

Economic Cooperation and Development (OECD). The core configuration shown in Figure 4

was constructed based on the VENUS-2 MOX core measurement data. This core consists of a

central MOX assembly, eight surrounding UO2 fuel assemblies, and peripheral water reflector

regions. The steel shroud baffle is not modeled explicitly in the outer region of the core.

Therefore, there occurs a strong thermal flux gradient especially near the fuel/reflector interface,

which defies an easy analysis based on the conventional single assembly homogenization.

The pin-wise flux analysis based on the two-level calculations of the lattice physics

transport calculation and the nodal diffusion calculation was carried out. Two-group cross-

sections, discontinuity factors, and heterogeneous flux form factors were generated from

HELLIOS(Ref.3) single assembly calculations. A few sets of cross-sections for edge pin rows

required to build the one-dimensional model proposed in this study were obtained from these



homogenization calculations. The refined Analytic Function Expansion Nodal (AFEN)

method(Ref.4) was applied for the homogeneous core flux distribution with one-node-per-

assembly mesh grid. The intranodal homogeneous flux from the refined AFEN nodal

calculation and the heterogeneous flux form factors from the HELLIOS homogenization

calculations were modulated to estimate the pin-wise flux reconstruction. In the nodal

calculation stage, any corrections of the thermal flux gradient effect on discontinuity factors

were not applied. Then, only the outmost pin flux form factors of a fuel assembly were updated

in the flux reconstruction stage according to the proposed procedure solving the one-

dimensional material interface model. The one-dimensional model consists of only three regions

per assembly, two of which represent explicitly the outmost and the second outmost pin rows of

the assembly.

Figure 4.  Core Configuration of OECD-NEA PDWA Benchmark Problem

Two pin power distributions reconstructed by the conventional procedure and by the new

procedure were compared with the reference HELLIOS pin powers in Figure 5. This figure shows

a distinct error pattern of the conventional method that underestimates systematically the powers

in the edge pins facing the MOX/UO2 interface and the fuel/reflect interface. This pattern owes to

the fact that the form factors from the single assembly homogenization with zero current boundary

condition cannot take into account the effect of the actual thermal flux gradient near the interfaces.

The refined AFEN method that can calculate the homogeneous flux distribution accurately across
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the interfaces also contributed to bringing the deficiency in form factors of single assembly

homogenization into prominence. This figure also shows that the new method using form factors

corrected by the thermal flux gradients across material interfaces can reduce significantly the

errors in reconstructed pin powers near the interfaces. From these results, it is ascertained that the

thermal flux gradient occurring in a very narrow range near a material interface can be accurately

simulated by the one-dimensional model. This success of the simple one-dimensional model owes

much to the short mean free path of thermal neutrons compared to assembly size. Note that the

additional time needed in solving the one-dimensional models at interfaces is negligible compared

to the total time needed in analyzing the detailed pin-wise powers in a reactor. Thus, the new

model is practical to overcome the deficiency of single assembly homogenization.

Figure 5.  Pin Power Errors (%) Calculated by Conventional Procedure (Upper) and
New Procedure (Lower)
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V.  Conclusions

The two-level reactor core analysis system consisting of the lattice physics homogenization

calculation and the nodal diffusion calculation is usually based on single assembly

homogenization calculations that impose zero-current boundary conditions. The system works

relatively well in predicting the detailed pin-wise powers in the region where no significant

material discontinuities are involved. However, it shows poor performance near material

interfaces where the steep flux gradient occurs. It is commonly understood that large pin power

errors concentrated in such a region are caused by the fact that the single assembly

homogenization with zero neutron current boundary condition cannot handle the steep thermal

flux change near the region having strong material discontinuity.

The multi-assembly homogenization or an approach using the boundary conditions updated

from the nodal calculation may be utilized to remedy the limitations of the single assembly

homogenization. Instead of such approaches requiring significant additional calculational efforts,

a new approach solving a few-region one-dimensional one-group model consisting of some pin

columns of two adjacent assemblies is proposed. This one-dimensional model owes to the short

mean free path of thermal neutrons compared to the assembly size and relies still basically on

the single assembly homogenization. The only additional effort required during the single

assembly homogenization stage is to edit a few sets of the cross-sections for edge pin rows. This

model for each interface of materials is solved analytically by the integral transport method to

take into account the effect of the thermal flux gradient on equivalence theory parameters and

form factors during or after the nodal diffusion calculation.

The accuracy and the applicability of the presented model were tested against a small

benchmark problem consisting of MOX fuel and bare water reflector without baffle. After

solving the one-dimensional model consisting of only six regions per interface, the outmost flux

form factors of each assembly were corrected so that the effect of the thermal flux gradient

across the interface is taken into account. The result shows that the new method based on this

simple model can reduce significantly the errors in reconstructed pin powers near strong

material interfaces. Therefore, it can be concluded that the thermal flux gradient near a material

discontinuity can accurately modeled by the one-dimensional model. Noting that the additional

time needed in solving the one-dimensional models at interfaces is negligible compared to the

total time needed in analyzing the detailed pin-wise powers in a reactor, the new model can be

used as a practical tool to overcome the deficiency of single assembly homogenization.
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